Metamath Proof Explorer


Theorem simprld

Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simprld.1 ( 𝜑 → ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
Assertion simprld ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 simprld.1 ( 𝜑 → ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
2 1 simprd ( 𝜑 → ( 𝜒𝜃 ) )
3 2 simpld ( 𝜑𝜒 )