Description: Deduction form of simprr , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | simprrd.1 | ⊢ ( 𝜑 → ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
Assertion | simprrd | ⊢ ( 𝜑 → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | ⊢ ( 𝜑 → ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
2 | 1 | simprd | ⊢ ( 𝜑 → ( 𝜒 ∧ 𝜃 ) ) |
3 | 2 | simprd | ⊢ ( 𝜑 → 𝜃 ) |