Metamath Proof Explorer


Theorem simprrd

Description: Deduction form of simprr , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simprrd.1 ( 𝜑 → ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
Assertion simprrd ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 simprrd.1 ( 𝜑 → ( 𝜓 ∧ ( 𝜒𝜃 ) ) )
2 1 simprd ( 𝜑 → ( 𝜒𝜃 ) )
3 2 simprd ( 𝜑𝜃 )