Description: Deduction form of simprr , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | simprrd.1 | ⊢ ( 𝜑 → ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
| Assertion | simprrd | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrd.1 | ⊢ ( 𝜑 → ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
| 2 | 1 | simprd | ⊢ ( 𝜑 → ( 𝜒 ∧ 𝜃 ) ) |
| 3 | 2 | simprd | ⊢ ( 𝜑 → 𝜃 ) |