Metamath Proof Explorer


Theorem simprrl

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simprrl ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜒𝜃 ) → 𝜒 )
2 1 ad2antll ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) → 𝜒 )