Metamath Proof Explorer


Theorem simprrr

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simprrr ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜒𝜃 ) → 𝜃 )
2 1 ad2antll ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒𝜃 ) ) ) → 𝜃 )