Metamath Proof Explorer


Theorem sin0

Description: Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005)

Ref Expression
Assertion sin0 ( sin ‘ 0 ) = 0

Proof

Step Hyp Ref Expression
1 neg0 - 0 = 0
2 1 fveq2i ( sin ‘ - 0 ) = ( sin ‘ 0 )
3 0cn 0 ∈ ℂ
4 sinneg ( 0 ∈ ℂ → ( sin ‘ - 0 ) = - ( sin ‘ 0 ) )
5 3 4 ax-mp ( sin ‘ - 0 ) = - ( sin ‘ 0 )
6 2 5 eqtr3i ( sin ‘ 0 ) = - ( sin ‘ 0 )
7 sincl ( 0 ∈ ℂ → ( sin ‘ 0 ) ∈ ℂ )
8 3 7 ax-mp ( sin ‘ 0 ) ∈ ℂ
9 8 eqnegi ( ( sin ‘ 0 ) = - ( sin ‘ 0 ) ↔ ( sin ‘ 0 ) = 0 )
10 6 9 mpbi ( sin ‘ 0 ) = 0