| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) | 
						
							| 5 | 4 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 7 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  3  ∈  ℕ0 )  →  ( 𝐴 ↑ 3 )  ∈  ℝ ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 3 )  ∈  ℝ ) | 
						
							| 9 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 10 |  | nndivre | ⊢ ( ( ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  6  ∈  ℕ )  →  ( ( 𝐴 ↑ 3 )  /  6 )  ∈  ℝ ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  6 )  ∈  ℝ ) | 
						
							| 12 | 5 11 | resubcld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  ∈  ℂ ) | 
						
							| 14 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 15 | 5 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℂ ) | 
						
							| 16 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 18 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 19 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 20 | 19 | eftlcl | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  4  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 21 | 17 18 20 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 | 21 | imcld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 24 | 19 | resin4p | ⊢ ( 𝐴  ∈  ℝ  →  ( sin ‘ 𝐴 )  =  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  +  ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 25 | 5 24 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( sin ‘ 𝐴 )  =  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  +  ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 26 | 13 23 25 | mvrladdd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( sin ‘ 𝐴 )  −  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) ) )  =  ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ( sin ‘ 𝐴 )  −  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) )  =  ( abs ‘ ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 28 | 23 | abscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 29 | 21 | abscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 30 |  | absimle | ⊢ ( Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 )  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  ≤  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 31 | 21 30 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  ≤  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 32 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  4  ∈  ℕ0 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ ) | 
						
							| 33 | 5 18 32 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ ) | 
						
							| 34 |  | nndivre | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  6  ∈  ℕ )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ∈  ℝ ) | 
						
							| 35 | 33 9 34 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ∈  ℝ ) | 
						
							| 36 | 19 | ef01bndlem | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  <  ( ( 𝐴 ↑ 4 )  /  6 ) ) | 
						
							| 37 | 6 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  3  ∈  ℕ0 ) | 
						
							| 38 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 39 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 40 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 41 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 42 | 39 40 41 | ltleii | ⊢ 3  ≤  4 | 
						
							| 43 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 44 | 43 | eluz1i | ⊢ ( 4  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 4  ∈  ℤ  ∧  3  ≤  4 ) ) | 
						
							| 45 | 38 42 44 | mpbir2an | ⊢ 4  ∈  ( ℤ≥ ‘ 3 ) | 
						
							| 46 | 45 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  4  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 47 | 4 | simp2bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  𝐴 ) | 
						
							| 48 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 49 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 50 | 48 5 49 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 51 | 47 50 | mpd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  ≤  𝐴 ) | 
						
							| 52 | 4 | simp3bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ≤  1 ) | 
						
							| 53 | 5 37 46 51 52 | leexp2rd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ≤  ( 𝐴 ↑ 3 ) ) | 
						
							| 54 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 55 | 54 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  6  ∈  ℝ ) | 
						
							| 56 |  | 6pos | ⊢ 0  <  6 | 
						
							| 57 | 56 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  6 ) | 
						
							| 58 |  | lediv1 | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  ( 6  ∈  ℝ  ∧  0  <  6 ) )  →  ( ( 𝐴 ↑ 4 )  ≤  ( 𝐴 ↑ 3 )  ↔  ( ( 𝐴 ↑ 4 )  /  6 )  ≤  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) | 
						
							| 59 | 33 8 55 57 58 | syl112anc | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  ≤  ( 𝐴 ↑ 3 )  ↔  ( ( 𝐴 ↑ 4 )  /  6 )  ≤  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) | 
						
							| 60 | 53 59 | mpbid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ≤  ( ( 𝐴 ↑ 3 )  /  6 ) ) | 
						
							| 61 | 29 35 11 36 60 | ltletrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) )  <  ( ( 𝐴 ↑ 3 )  /  6 ) ) | 
						
							| 62 | 28 29 11 31 61 | lelttrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ℑ ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) )  <  ( ( 𝐴 ↑ 3 )  /  6 ) ) | 
						
							| 63 | 27 62 | eqbrtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( ( sin ‘ 𝐴 )  −  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) )  <  ( ( 𝐴 ↑ 3 )  /  6 ) ) | 
						
							| 64 | 5 | resincld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 65 | 64 12 11 | absdifltd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( abs ‘ ( ( sin ‘ 𝐴 )  −  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) )  <  ( ( 𝐴 ↑ 3 )  /  6 )  ↔  ( ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  +  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) ) ) | 
						
							| 66 | 11 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  6 )  ∈  ℂ ) | 
						
							| 67 | 15 66 66 | subsub4d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  =  ( 𝐴  −  ( ( ( 𝐴 ↑ 3 )  /  6 )  +  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) ) | 
						
							| 68 | 8 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 3 )  ∈  ℂ ) | 
						
							| 69 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 70 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 71 | 69 70 | pm3.2i | ⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 ) | 
						
							| 72 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 73 |  | divdiv1 | ⊢ ( ( ( 𝐴 ↑ 3 )  ∈  ℂ  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 )  =  ( ( 𝐴 ↑ 3 )  /  ( 3  ·  2 ) ) ) | 
						
							| 74 | 71 72 73 | mp3an23 | ⊢ ( ( 𝐴 ↑ 3 )  ∈  ℂ  →  ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 )  =  ( ( 𝐴 ↑ 3 )  /  ( 3  ·  2 ) ) ) | 
						
							| 75 | 68 74 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 )  =  ( ( 𝐴 ↑ 3 )  /  ( 3  ·  2 ) ) ) | 
						
							| 76 |  | 3t2e6 | ⊢ ( 3  ·  2 )  =  6 | 
						
							| 77 | 76 | oveq2i | ⊢ ( ( 𝐴 ↑ 3 )  /  ( 3  ·  2 ) )  =  ( ( 𝐴 ↑ 3 )  /  6 ) | 
						
							| 78 | 75 77 | eqtr2di | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  6 )  =  ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 ) ) | 
						
							| 79 | 78 78 | oveq12d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 3 )  /  6 )  +  ( ( 𝐴 ↑ 3 )  /  6 ) )  =  ( ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 )  +  ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 ) ) ) | 
						
							| 80 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 81 |  | nndivre | ⊢ ( ( ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( ( 𝐴 ↑ 3 )  /  3 )  ∈  ℝ ) | 
						
							| 82 | 8 80 81 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  ∈  ℝ ) | 
						
							| 83 | 82 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  ∈  ℂ ) | 
						
							| 84 | 83 | 2halvesd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 )  +  ( ( ( 𝐴 ↑ 3 )  /  3 )  /  2 ) )  =  ( ( 𝐴 ↑ 3 )  /  3 ) ) | 
						
							| 85 | 79 84 | eqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 3 )  /  6 )  +  ( ( 𝐴 ↑ 3 )  /  6 ) )  =  ( ( 𝐴 ↑ 3 )  /  3 ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴  −  ( ( ( 𝐴 ↑ 3 )  /  6 )  +  ( ( 𝐴 ↑ 3 )  /  6 ) ) )  =  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) ) ) | 
						
							| 87 | 67 86 | eqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  =  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) ) ) | 
						
							| 88 | 87 | breq1d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  <  ( sin ‘ 𝐴 )  ↔  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 ) ) ) | 
						
							| 89 | 15 66 | npcand | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  +  ( ( 𝐴 ↑ 3 )  /  6 ) )  =  𝐴 ) | 
						
							| 90 | 89 | breq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( sin ‘ 𝐴 )  <  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  +  ( ( 𝐴 ↑ 3 )  /  6 ) )  ↔  ( sin ‘ 𝐴 )  <  𝐴 ) ) | 
						
							| 91 | 88 90 | anbi12d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) )  +  ( ( 𝐴 ↑ 3 )  /  6 ) ) )  ↔  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  𝐴 ) ) ) | 
						
							| 92 | 65 91 | bitrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( abs ‘ ( ( sin ‘ 𝐴 )  −  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  6 ) ) ) )  <  ( ( 𝐴 ↑ 3 )  /  6 )  ↔  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  𝐴 ) ) ) | 
						
							| 93 | 63 92 | mpbid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  𝐴 ) ) |