Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
5 |
4
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
7 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
9 |
|
6nn |
⊢ 6 ∈ ℕ |
10 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
11 |
8 9 10
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℝ ) |
12 |
5 11
|
resubcld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ∈ ℂ ) |
14 |
|
ax-icn |
⊢ i ∈ ℂ |
15 |
5
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
16 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
17 |
14 15 16
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
18 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
19 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
20 |
19
|
eftlcl |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
21 |
17 18 20
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
22 |
21
|
imcld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℂ ) |
24 |
19
|
resin4p |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
25 |
5 24
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) = ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
26 |
13 23 25
|
mvrladdd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) = ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
28 |
23
|
abscld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
29 |
21
|
abscld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ∈ ℝ ) |
30 |
|
absimle |
⊢ ( Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
31 |
21 30
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) ≤ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
32 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
33 |
5 18 32
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
34 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
35 |
33 9 34
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
36 |
19
|
ef01bndlem |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
37 |
6
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 3 ∈ ℕ0 ) |
38 |
|
4z |
⊢ 4 ∈ ℤ |
39 |
|
3re |
⊢ 3 ∈ ℝ |
40 |
|
4re |
⊢ 4 ∈ ℝ |
41 |
|
3lt4 |
⊢ 3 < 4 |
42 |
39 40 41
|
ltleii |
⊢ 3 ≤ 4 |
43 |
|
3z |
⊢ 3 ∈ ℤ |
44 |
43
|
eluz1i |
⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 4 ∈ ℤ ∧ 3 ≤ 4 ) ) |
45 |
38 42 44
|
mpbir2an |
⊢ 4 ∈ ( ℤ≥ ‘ 3 ) |
46 |
45
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 4 ∈ ( ℤ≥ ‘ 3 ) ) |
47 |
4
|
simp2bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
48 |
|
0re |
⊢ 0 ∈ ℝ |
49 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
50 |
48 5 49
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
51 |
47 50
|
mpd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 ≤ 𝐴 ) |
52 |
4
|
simp3bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
53 |
5 37 46 51 52
|
leexp2rd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ) |
54 |
|
6re |
⊢ 6 ∈ ℝ |
55 |
54
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 6 ∈ ℝ ) |
56 |
|
6pos |
⊢ 0 < 6 |
57 |
56
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 6 ) |
58 |
|
lediv1 |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ ( 𝐴 ↑ 3 ) ∈ ℝ ∧ ( 6 ∈ ℝ ∧ 0 < 6 ) ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
59 |
33 8 55 57 58
|
syl112anc |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) ≤ ( 𝐴 ↑ 3 ) ↔ ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
60 |
53 59
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ≤ ( ( 𝐴 ↑ 3 ) / 6 ) ) |
61 |
29 35 11 36 60
|
ltletrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
62 |
28 29 11 31 61
|
lelttrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ℑ ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
63 |
27 62
|
eqbrtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ) |
64 |
5
|
resincld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
65 |
64 12 11
|
absdifltd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ↔ ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
66 |
11
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
67 |
15 66 66
|
subsub4d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
68 |
8
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
69 |
|
3cn |
⊢ 3 ∈ ℂ |
70 |
|
3ne0 |
⊢ 3 ≠ 0 |
71 |
69 70
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
72 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
73 |
|
divdiv1 |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
74 |
71 72 73
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
75 |
68 74
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) = ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) ) |
76 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
77 |
76
|
oveq2i |
⊢ ( ( 𝐴 ↑ 3 ) / ( 3 · 2 ) ) = ( ( 𝐴 ↑ 3 ) / 6 ) |
78 |
75 77
|
eqtr2di |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 6 ) = ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) |
79 |
78 78
|
oveq12d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) + ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) ) |
80 |
|
3nn |
⊢ 3 ∈ ℕ |
81 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
82 |
8 80 81
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
83 |
82
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℂ ) |
84 |
83
|
2halvesd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) + ( ( ( 𝐴 ↑ 3 ) / 3 ) / 2 ) ) = ( ( 𝐴 ↑ 3 ) / 3 ) ) |
85 |
79 84
|
eqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( ( 𝐴 ↑ 3 ) / 3 ) ) |
86 |
85
|
oveq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( ( 𝐴 ↑ 3 ) / 6 ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
87 |
67 86
|
eqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
88 |
87
|
breq1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ↔ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) ) |
89 |
15 66
|
npcand |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) = 𝐴 ) |
90 |
89
|
breq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ↔ ( sin ‘ 𝐴 ) < 𝐴 ) ) |
91 |
88 90
|
anbi12d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) − ( ( 𝐴 ↑ 3 ) / 6 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ↔ ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) ) |
92 |
65 91
|
bitrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( ( sin ‘ 𝐴 ) − ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) < ( ( 𝐴 ↑ 3 ) / 6 ) ↔ ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) ) |
93 |
63 92
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) |