| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) | 
						
							| 5 | 4 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 7 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  3  ∈  ℕ0 )  →  ( 𝐴 ↑ 3 )  ∈  ℝ ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 3 )  ∈  ℝ ) | 
						
							| 9 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 10 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 11 |  | redivcl | ⊢ ( ( ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  3  ∈  ℝ  ∧  3  ≠  0 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  ∈  ℝ ) | 
						
							| 12 | 9 10 11 | mp3an23 | ⊢ ( ( 𝐴 ↑ 3 )  ∈  ℝ  →  ( ( 𝐴 ↑ 3 )  /  3 )  ∈  ℝ ) | 
						
							| 13 | 8 12 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  ∈  ℝ ) | 
						
							| 14 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 15 |  | expgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  3  ∈  ℤ  ∧  0  <  𝐴 )  →  0  <  ( 𝐴 ↑ 3 ) ) | 
						
							| 16 | 14 15 | mp3an2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  ( 𝐴 ↑ 3 ) ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 )  →  0  <  ( 𝐴 ↑ 3 ) ) | 
						
							| 18 | 4 17 | sylbi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  ( 𝐴 ↑ 3 ) ) | 
						
							| 19 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 20 | 2 19 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  <  1 ) | 
						
							| 21 |  | 3pos | ⊢ 0  <  3 | 
						
							| 22 | 9 21 | pm3.2i | ⊢ ( 3  ∈  ℝ  ∧  0  <  3 ) | 
						
							| 23 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 24 |  | ltdiv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 3  ∈  ℝ  ∧  0  <  3 )  ∧  ( ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 3 ) ) )  →  ( 1  <  3  ↔  ( ( 𝐴 ↑ 3 )  /  3 )  <  ( ( 𝐴 ↑ 3 )  /  1 ) ) ) | 
						
							| 25 | 23 24 | mpbii | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 3  ∈  ℝ  ∧  0  <  3 )  ∧  ( ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 3 ) ) )  →  ( ( 𝐴 ↑ 3 )  /  3 )  <  ( ( 𝐴 ↑ 3 )  /  1 ) ) | 
						
							| 26 | 20 22 25 | mp3an12 | ⊢ ( ( ( 𝐴 ↑ 3 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 3 ) )  →  ( ( 𝐴 ↑ 3 )  /  3 )  <  ( ( 𝐴 ↑ 3 )  /  1 ) ) | 
						
							| 27 | 8 18 26 | syl2anc | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  <  ( ( 𝐴 ↑ 3 )  /  1 ) ) | 
						
							| 28 | 8 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 3 )  ∈  ℂ ) | 
						
							| 29 | 28 | div1d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  1 )  =  ( 𝐴 ↑ 3 ) ) | 
						
							| 30 | 27 29 | breqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  <  ( 𝐴 ↑ 3 ) ) | 
						
							| 31 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 32 | 31 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  1  ∈  ℕ0 ) | 
						
							| 33 |  | 1le3 | ⊢ 1  ≤  3 | 
						
							| 34 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 35 | 34 | eluz1i | ⊢ ( 3  ∈  ( ℤ≥ ‘ 1 )  ↔  ( 3  ∈  ℤ  ∧  1  ≤  3 ) ) | 
						
							| 36 | 14 33 35 | mpbir2an | ⊢ 3  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 37 | 36 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  3  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 38 | 4 | simp2bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  𝐴 ) | 
						
							| 39 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 40 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 41 | 39 5 40 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 42 | 38 41 | mpd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  ≤  𝐴 ) | 
						
							| 43 | 4 | simp3bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ≤  1 ) | 
						
							| 44 | 5 32 37 42 43 | leexp2rd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 3 )  ≤  ( 𝐴 ↑ 1 ) ) | 
						
							| 45 | 5 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℂ ) | 
						
							| 46 | 45 | exp1d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 47 | 44 46 | breqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 3 )  ≤  𝐴 ) | 
						
							| 48 | 13 8 5 30 47 | ltletrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 3 )  /  3 )  <  𝐴 ) | 
						
							| 49 | 13 5 | posdifd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 𝐴 ↑ 3 )  /  3 )  <  𝐴  ↔  0  <  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) ) ) ) | 
						
							| 50 | 48 49 | mpbid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) ) ) | 
						
							| 51 |  | sin01bnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  𝐴 ) ) | 
						
							| 52 | 51 | simpld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 ) ) | 
						
							| 53 | 5 13 | resubcld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  ∈  ℝ ) | 
						
							| 54 | 5 | resincld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 55 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ∈  ℝ )  →  ( ( 0  <  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  ∧  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 ) )  →  0  <  ( sin ‘ 𝐴 ) ) ) | 
						
							| 56 | 39 53 54 55 | mp3an2i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 0  <  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  ∧  ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 ) )  →  0  <  ( sin ‘ 𝐴 ) ) ) | 
						
							| 57 | 50 52 56 | mp2and | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  ( sin ‘ 𝐴 ) ) |