Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
5 |
4
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
7 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
9 |
|
3re |
⊢ 3 ∈ ℝ |
10 |
|
3ne0 |
⊢ 3 ≠ 0 |
11 |
|
redivcl |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
12 |
9 10 11
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 3 ) ∈ ℝ → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
13 |
8 12
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
14 |
|
3z |
⊢ 3 ∈ ℤ |
15 |
|
expgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 3 ) ) |
16 |
14 15
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 3 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) → 0 < ( 𝐴 ↑ 3 ) ) |
18 |
4 17
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 𝐴 ↑ 3 ) ) |
19 |
|
0lt1 |
⊢ 0 < 1 |
20 |
2 19
|
pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 0 < 1 ) |
21 |
|
3pos |
⊢ 0 < 3 |
22 |
9 21
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
23 |
|
1lt3 |
⊢ 1 < 3 |
24 |
|
ltdiv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ∧ ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 3 ) ) ) → ( 1 < 3 ↔ ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) ) |
25 |
23 24
|
mpbii |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ∧ ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 3 ) ) ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) |
26 |
20 22 25
|
mp3an12 |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 3 ) ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) |
27 |
8 18 26
|
syl2anc |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) |
28 |
8
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
29 |
28
|
div1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 1 ) = ( 𝐴 ↑ 3 ) ) |
30 |
27 29
|
breqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( 𝐴 ↑ 3 ) ) |
31 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
32 |
31
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 1 ∈ ℕ0 ) |
33 |
|
1le3 |
⊢ 1 ≤ 3 |
34 |
|
1z |
⊢ 1 ∈ ℤ |
35 |
34
|
eluz1i |
⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 3 ∈ ℤ ∧ 1 ≤ 3 ) ) |
36 |
14 33 35
|
mpbir2an |
⊢ 3 ∈ ( ℤ≥ ‘ 1 ) |
37 |
36
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 3 ∈ ( ℤ≥ ‘ 1 ) ) |
38 |
4
|
simp2bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
39 |
|
0re |
⊢ 0 ∈ ℝ |
40 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
41 |
39 5 40
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
42 |
38 41
|
mpd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 ≤ 𝐴 ) |
43 |
4
|
simp3bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
44 |
5 32 37 42 43
|
leexp2rd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ≤ ( 𝐴 ↑ 1 ) ) |
45 |
5
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
46 |
45
|
exp1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
47 |
44 46
|
breqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ≤ 𝐴 ) |
48 |
13 8 5 30 47
|
ltletrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) < 𝐴 ) |
49 |
13 5
|
posdifd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) < 𝐴 ↔ 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) ) |
50 |
48 49
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
51 |
|
sin01bnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) |
52 |
51
|
simpld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) |
53 |
5 13
|
resubcld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∈ ℝ ) |
54 |
5
|
resincld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
55 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) → ( ( 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) → 0 < ( sin ‘ 𝐴 ) ) ) |
56 |
39 53 54 55
|
mp3an2i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) → 0 < ( sin ‘ 𝐴 ) ) ) |
57 |
50 52 56
|
mp2and |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ 𝐴 ) ) |