| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  2  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 2 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 ) ) | 
						
							| 5 |  | rehalfcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 )  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 7 | 4 6 | sylbi | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 8 |  | resincl | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℝ ) | 
						
							| 9 |  | recoscl | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ  →  ( cos ‘ ( 𝐴  /  2 ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | remulcld | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ  →  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ ) | 
						
							| 12 |  | 2pos | ⊢ 0  <  2 | 
						
							| 13 |  | divgt0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  <  ( 𝐴  /  2 ) ) | 
						
							| 14 | 2 12 13 | mpanr12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  ( 𝐴  /  2 ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 )  →  0  <  ( 𝐴  /  2 ) ) | 
						
							| 16 | 2 12 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 17 |  | lediv1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐴  ≤  2  ↔  ( 𝐴  /  2 )  ≤  ( 2  /  2 ) ) ) | 
						
							| 18 | 2 16 17 | mp3an23 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≤  2  ↔  ( 𝐴  /  2 )  ≤  ( 2  /  2 ) ) ) | 
						
							| 19 | 18 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  2 )  →  ( 𝐴  /  2 )  ≤  ( 2  /  2 ) ) | 
						
							| 20 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 21 | 19 20 | breqtrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  2 )  →  ( 𝐴  /  2 )  ≤  1 ) | 
						
							| 22 | 21 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 )  →  ( 𝐴  /  2 )  ≤  1 ) | 
						
							| 23 | 6 15 22 | 3jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 )  →  ( ( 𝐴  /  2 )  ∈  ℝ  ∧  0  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  1 ) ) | 
						
							| 24 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 25 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( ( 𝐴  /  2 )  ∈  ( 0 (,] 1 )  ↔  ( ( 𝐴  /  2 )  ∈  ℝ  ∧  0  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  1 ) ) ) | 
						
							| 26 | 1 24 25 | mp2an | ⊢ ( ( 𝐴  /  2 )  ∈  ( 0 (,] 1 )  ↔  ( ( 𝐴  /  2 )  ∈  ℝ  ∧  0  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  1 ) ) | 
						
							| 27 | 23 4 26 | 3imtr4i | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( 𝐴  /  2 )  ∈  ( 0 (,] 1 ) ) | 
						
							| 28 |  | sin01gt0 | ⊢ ( ( 𝐴  /  2 )  ∈  ( 0 (,] 1 )  →  0  <  ( sin ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( sin ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 30 |  | cos01gt0 | ⊢ ( ( 𝐴  /  2 )  ∈  ( 0 (,] 1 )  →  0  <  ( cos ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 31 | 27 30 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( cos ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 32 |  | axmulgt0 | ⊢ ( ( ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℝ  ∧  ( cos ‘ ( 𝐴  /  2 ) )  ∈  ℝ )  →  ( ( 0  <  ( sin ‘ ( 𝐴  /  2 ) )  ∧  0  <  ( cos ‘ ( 𝐴  /  2 ) ) )  →  0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 33 | 8 9 32 | syl2anc | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ  →  ( ( 0  <  ( sin ‘ ( 𝐴  /  2 ) )  ∧  0  <  ( cos ‘ ( 𝐴  /  2 ) ) )  →  0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 34 | 7 33 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( ( 0  <  ( sin ‘ ( 𝐴  /  2 ) )  ∧  0  <  ( cos ‘ ( 𝐴  /  2 ) ) )  →  0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 35 | 29 31 34 | mp2and | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) | 
						
							| 36 |  | axmulgt0 | ⊢ ( ( 2  ∈  ℝ  ∧  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ )  →  ( ( 0  <  2  ∧  0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) )  →  0  <  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) ) | 
						
							| 37 | 2 36 | mpan | ⊢ ( ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ  →  ( ( 0  <  2  ∧  0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) )  →  0  <  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) ) | 
						
							| 38 | 12 37 | mpani | ⊢ ( ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ  →  ( 0  <  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) )  →  0  <  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) ) | 
						
							| 39 | 11 35 38 | sylc | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 40 | 7 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 41 |  | sin2t | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( sin ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( sin ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( 2  ·  ( ( sin ‘ ( 𝐴  /  2 ) )  ·  ( cos ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 43 | 39 42 | breqtrrd | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( sin ‘ ( 2  ·  ( 𝐴  /  2 ) ) ) ) | 
						
							| 44 | 4 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  𝐴  ∈  ℝ ) | 
						
							| 45 | 44 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  𝐴  ∈  ℂ ) | 
						
							| 46 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 47 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 48 |  | divcan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 49 | 46 47 48 | mp3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 50 | 45 49 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  ( sin ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 52 | 43 51 | breqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( sin ‘ 𝐴 ) ) |