Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
2re |
⊢ 2 ∈ ℝ |
3 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) |
5 |
|
rehalfcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ∈ ℝ ) |
7 |
4 6
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 𝐴 / 2 ) ∈ ℝ ) |
8 |
|
resincl |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
9 |
|
recoscl |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
10 |
8 9
|
remulcld |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
11 |
7 10
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
12 |
|
2pos |
⊢ 0 < 2 |
13 |
|
divgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( 𝐴 / 2 ) ) |
14 |
2 12 13
|
mpanr12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 / 2 ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → 0 < ( 𝐴 / 2 ) ) |
16 |
2 12
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
17 |
|
lediv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 ≤ 2 ↔ ( 𝐴 / 2 ) ≤ ( 2 / 2 ) ) ) |
18 |
2 16 17
|
mp3an23 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 2 ↔ ( 𝐴 / 2 ) ≤ ( 2 / 2 ) ) ) |
19 |
18
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ≤ ( 2 / 2 ) ) |
20 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
21 |
19 20
|
breqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ≤ 1 ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → ( 𝐴 / 2 ) ≤ 1 ) |
23 |
6 15 22
|
3jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) |
24 |
|
1re |
⊢ 1 ∈ ℝ |
25 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) ) |
26 |
1 24 25
|
mp2an |
⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝐴 / 2 ) ∈ ℝ ∧ 0 < ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ 1 ) ) |
27 |
23 4 26
|
3imtr4i |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) ) |
28 |
|
sin01gt0 |
⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ ( 𝐴 / 2 ) ) ) |
29 |
27 28
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ ( 𝐴 / 2 ) ) ) |
30 |
|
cos01gt0 |
⊢ ( ( 𝐴 / 2 ) ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) |
31 |
27 30
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) |
32 |
|
axmulgt0 |
⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ∧ ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) → ( ( 0 < ( sin ‘ ( 𝐴 / 2 ) ) ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
33 |
8 9 32
|
syl2anc |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( ( 0 < ( sin ‘ ( 𝐴 / 2 ) ) ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
34 |
7 33
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( ( 0 < ( sin ‘ ( 𝐴 / 2 ) ) ∧ 0 < ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
35 |
29 31 34
|
mp2and |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) |
36 |
|
axmulgt0 |
⊢ ( ( 2 ∈ ℝ ∧ ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) → ( ( 0 < 2 ∧ 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
37 |
2 36
|
mpan |
⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ → ( ( 0 < 2 ∧ 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
38 |
12 37
|
mpani |
⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ → ( 0 < ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
39 |
11 35 38
|
sylc |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
40 |
7
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 𝐴 / 2 ) ∈ ℂ ) |
41 |
|
sin2t |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
42 |
40 41
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
43 |
39 42
|
breqtrrd |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) |
44 |
4
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 𝐴 ∈ ℝ ) |
45 |
44
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 𝐴 ∈ ℂ ) |
46 |
|
2cn |
⊢ 2 ∈ ℂ |
47 |
|
2ne0 |
⊢ 2 ≠ 0 |
48 |
|
divcan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
49 |
46 47 48
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
50 |
45 49
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
51 |
50
|
fveq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( sin ‘ 𝐴 ) ) |
52 |
43 51
|
breqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝐴 ) ) |