Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
|
sin2t |
⊢ ( π ∈ ℂ → ( sin ‘ ( 2 · π ) ) = ( 2 · ( ( sin ‘ π ) · ( cos ‘ π ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( sin ‘ ( 2 · π ) ) = ( 2 · ( ( sin ‘ π ) · ( cos ‘ π ) ) ) |
4 |
|
sinpi |
⊢ ( sin ‘ π ) = 0 |
5 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
6 |
4 5
|
oveq12i |
⊢ ( ( sin ‘ π ) · ( cos ‘ π ) ) = ( 0 · - 1 ) |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
7
|
mul02i |
⊢ ( 0 · - 1 ) = 0 |
9 |
6 8
|
eqtri |
⊢ ( ( sin ‘ π ) · ( cos ‘ π ) ) = 0 |
10 |
9
|
oveq2i |
⊢ ( 2 · ( ( sin ‘ π ) · ( cos ‘ π ) ) ) = ( 2 · 0 ) |
11 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
12 |
10 11
|
eqtri |
⊢ ( 2 · ( ( sin ‘ π ) · ( cos ‘ π ) ) ) = 0 |
13 |
3 12
|
eqtri |
⊢ ( sin ‘ ( 2 · π ) ) = 0 |