| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 2 |  | sin2t | ⊢ ( π  ∈  ℂ  →  ( sin ‘ ( 2  ·  π ) )  =  ( 2  ·  ( ( sin ‘ π )  ·  ( cos ‘ π ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( sin ‘ ( 2  ·  π ) )  =  ( 2  ·  ( ( sin ‘ π )  ·  ( cos ‘ π ) ) ) | 
						
							| 4 |  | sinpi | ⊢ ( sin ‘ π )  =  0 | 
						
							| 5 |  | cospi | ⊢ ( cos ‘ π )  =  - 1 | 
						
							| 6 | 4 5 | oveq12i | ⊢ ( ( sin ‘ π )  ·  ( cos ‘ π ) )  =  ( 0  ·  - 1 ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 | 7 | mul02i | ⊢ ( 0  ·  - 1 )  =  0 | 
						
							| 9 | 6 8 | eqtri | ⊢ ( ( sin ‘ π )  ·  ( cos ‘ π ) )  =  0 | 
						
							| 10 | 9 | oveq2i | ⊢ ( 2  ·  ( ( sin ‘ π )  ·  ( cos ‘ π ) ) )  =  ( 2  ·  0 ) | 
						
							| 11 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 12 | 10 11 | eqtri | ⊢ ( 2  ·  ( ( sin ‘ π )  ·  ( cos ‘ π ) ) )  =  0 | 
						
							| 13 | 3 12 | eqtri | ⊢ ( sin ‘ ( 2  ·  π ) )  =  0 |