| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2times | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  𝐴 )  =  ( 𝐴  +  𝐴 ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 2  ·  𝐴 ) )  =  ( sin ‘ ( 𝐴  +  𝐴 ) ) ) | 
						
							| 3 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 | 3 4 | mulcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐴 ) )  =  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐴 ) ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) )  +  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 7 |  | sinadd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( sin ‘ ( 𝐴  +  𝐴 ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 8 | 7 | anidms | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  +  𝐴 ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 9 | 4 3 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 10 | 9 | 2timesd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) )  +  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 11 | 6 8 10 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  +  𝐴 ) )  =  ( 2  ·  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 2 11 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 2  ·  𝐴 ) )  =  ( 2  ·  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) ) |