Step |
Hyp |
Ref |
Expression |
1 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
2 |
1
|
fveq2i |
⊢ ( sin ‘ ( 2 · 2 ) ) = ( sin ‘ 4 ) |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
sin2t |
⊢ ( 2 ∈ ℂ → ( sin ‘ ( 2 · 2 ) ) = ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( sin ‘ ( 2 · 2 ) ) = ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) |
6 |
2 5
|
eqtr3i |
⊢ ( sin ‘ 4 ) = ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) |
7 |
|
sincos2sgn |
⊢ ( 0 < ( sin ‘ 2 ) ∧ ( cos ‘ 2 ) < 0 ) |
8 |
7
|
simpri |
⊢ ( cos ‘ 2 ) < 0 |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
|
recoscl |
⊢ ( 2 ∈ ℝ → ( cos ‘ 2 ) ∈ ℝ ) |
11 |
9 10
|
ax-mp |
⊢ ( cos ‘ 2 ) ∈ ℝ |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
|
resincl |
⊢ ( 2 ∈ ℝ → ( sin ‘ 2 ) ∈ ℝ ) |
14 |
9 13
|
ax-mp |
⊢ ( sin ‘ 2 ) ∈ ℝ |
15 |
7
|
simpli |
⊢ 0 < ( sin ‘ 2 ) |
16 |
14 15
|
pm3.2i |
⊢ ( ( sin ‘ 2 ) ∈ ℝ ∧ 0 < ( sin ‘ 2 ) ) |
17 |
|
ltmul2 |
⊢ ( ( ( cos ‘ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( sin ‘ 2 ) ∈ ℝ ∧ 0 < ( sin ‘ 2 ) ) ) → ( ( cos ‘ 2 ) < 0 ↔ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < ( ( sin ‘ 2 ) · 0 ) ) ) |
18 |
11 12 16 17
|
mp3an |
⊢ ( ( cos ‘ 2 ) < 0 ↔ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < ( ( sin ‘ 2 ) · 0 ) ) |
19 |
8 18
|
mpbi |
⊢ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < ( ( sin ‘ 2 ) · 0 ) |
20 |
14
|
recni |
⊢ ( sin ‘ 2 ) ∈ ℂ |
21 |
20
|
mul01i |
⊢ ( ( sin ‘ 2 ) · 0 ) = 0 |
22 |
19 21
|
breqtri |
⊢ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < 0 |
23 |
14 11
|
remulcli |
⊢ ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ∈ ℝ |
24 |
|
2pos |
⊢ 0 < 2 |
25 |
9 24
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
26 |
|
ltmul2 |
⊢ ( ( ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < 0 ↔ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < ( 2 · 0 ) ) ) |
27 |
23 12 25 26
|
mp3an |
⊢ ( ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) < 0 ↔ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < ( 2 · 0 ) ) |
28 |
22 27
|
mpbi |
⊢ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < ( 2 · 0 ) |
29 |
3
|
mul01i |
⊢ ( 2 · 0 ) = 0 |
30 |
28 29
|
breqtri |
⊢ ( 2 · ( ( sin ‘ 2 ) · ( cos ‘ 2 ) ) ) < 0 |
31 |
6 30
|
eqbrtri |
⊢ ( sin ‘ 4 ) < 0 |