Step |
Hyp |
Ref |
Expression |
1 |
|
acosval |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) = ( ( π / 2 ) − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
3 |
|
picn |
⊢ π ∈ ℂ |
4 |
|
halfcl |
⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
5 |
3 4
|
ax-mp |
⊢ ( π / 2 ) ∈ ℂ |
6 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
nncan |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ( π / 2 ) − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) ) |
8 |
5 6 7
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) ) |
9 |
2 8
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) = ( arcsin ‘ 𝐴 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) ) = ( cos ‘ ( arcsin ‘ 𝐴 ) ) ) |
11 |
|
acoscl |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) ∈ ℂ ) |
12 |
|
coshalfpim |
⊢ ( ( arccos ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) ) = ( sin ‘ ( arccos ‘ 𝐴 ) ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) ) = ( sin ‘ ( arccos ‘ 𝐴 ) ) ) |
14 |
|
cosasin |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
15 |
10 13 14
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arccos ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |