| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recoscl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 | 1 | sqge0d | ⊢ ( 𝐴  ∈  ℝ  →  0  ≤  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 3 |  | resincl | ⊢ ( 𝐴  ∈  ℝ  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 | 3 | resqcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 5 | 1 | resqcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 6 | 4 5 | addge01d | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  ( ( cos ‘ 𝐴 ) ↑ 2 )  ↔  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 7 | 2 6 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 8 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | sincossq | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 11 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 12 | 10 11 | eqtr4di | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( 1 ↑ 2 ) ) | 
						
							| 13 | 7 12 | breqtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 14 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 15 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 16 |  | lenegsq | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  0  ≤  1 )  →  ( ( ( sin ‘ 𝐴 )  ≤  1  ∧  - ( sin ‘ 𝐴 )  ≤  1 )  ↔  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 17 | 14 15 16 | mp3an23 | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℝ  →  ( ( ( sin ‘ 𝐴 )  ≤  1  ∧  - ( sin ‘ 𝐴 )  ≤  1 )  ↔  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 18 |  | lenegcon1 | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( - ( sin ‘ 𝐴 )  ≤  1  ↔  - 1  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 19 | 14 18 | mpan2 | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℝ  →  ( - ( sin ‘ 𝐴 )  ≤  1  ↔  - 1  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℝ  →  ( ( ( sin ‘ 𝐴 )  ≤  1  ∧  - ( sin ‘ 𝐴 )  ≤  1 )  ↔  ( ( sin ‘ 𝐴 )  ≤  1  ∧  - 1  ≤  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 21 | 17 20 | bitr3d | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℝ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( 1 ↑ 2 )  ↔  ( ( sin ‘ 𝐴 )  ≤  1  ∧  - 1  ≤  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 22 | 3 21 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  ≤  ( 1 ↑ 2 )  ↔  ( ( sin ‘ 𝐴 )  ≤  1  ∧  - 1  ≤  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 23 | 13 22 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ 𝐴 )  ≤  1  ∧  - 1  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | ancomd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  ≤  1 ) ) |