Metamath Proof Explorer


Theorem sincos1sgn

Description: The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sincos1sgn ( 0 < ( sin ‘ 1 ) ∧ 0 < ( cos ‘ 1 ) )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 0lt1 0 < 1
3 1le1 1 ≤ 1
4 0xr 0 ∈ ℝ*
5 elioc2 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 1 ∈ ( 0 (,] 1 ) ↔ ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) ) )
6 4 1 5 mp2an ( 1 ∈ ( 0 (,] 1 ) ↔ ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) )
7 1 2 3 6 mpbir3an 1 ∈ ( 0 (,] 1 )
8 sin01gt0 ( 1 ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ 1 ) )
9 cos01gt0 ( 1 ∈ ( 0 (,] 1 ) → 0 < ( cos ‘ 1 ) )
10 8 9 jca ( 1 ∈ ( 0 (,] 1 ) → ( 0 < ( sin ‘ 1 ) ∧ 0 < ( cos ‘ 1 ) ) )
11 7 10 ax-mp ( 0 < ( sin ‘ 1 ) ∧ 0 < ( cos ‘ 1 ) )