| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
⊢ 2 ∈ ℝ |
| 2 |
|
2pos |
⊢ 0 < 2 |
| 3 |
1
|
leidi |
⊢ 2 ≤ 2 |
| 4 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 5 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 2 ∈ ( 0 (,] 2 ) ↔ ( 2 ∈ ℝ ∧ 0 < 2 ∧ 2 ≤ 2 ) ) ) |
| 6 |
4 1 5
|
mp2an |
⊢ ( 2 ∈ ( 0 (,] 2 ) ↔ ( 2 ∈ ℝ ∧ 0 < 2 ∧ 2 ≤ 2 ) ) |
| 7 |
1 2 3 6
|
mpbir3an |
⊢ 2 ∈ ( 0 (,] 2 ) |
| 8 |
|
sin02gt0 |
⊢ ( 2 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 2 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ 0 < ( sin ‘ 2 ) |
| 10 |
|
cos2bnd |
⊢ ( - ( 7 / 9 ) < ( cos ‘ 2 ) ∧ ( cos ‘ 2 ) < - ( 1 / 9 ) ) |
| 11 |
10
|
simpri |
⊢ ( cos ‘ 2 ) < - ( 1 / 9 ) |
| 12 |
|
9re |
⊢ 9 ∈ ℝ |
| 13 |
|
9pos |
⊢ 0 < 9 |
| 14 |
12 13
|
recgt0ii |
⊢ 0 < ( 1 / 9 ) |
| 15 |
12 13
|
gt0ne0ii |
⊢ 9 ≠ 0 |
| 16 |
12 15
|
rereccli |
⊢ ( 1 / 9 ) ∈ ℝ |
| 17 |
|
lt0neg2 |
⊢ ( ( 1 / 9 ) ∈ ℝ → ( 0 < ( 1 / 9 ) ↔ - ( 1 / 9 ) < 0 ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( 0 < ( 1 / 9 ) ↔ - ( 1 / 9 ) < 0 ) |
| 19 |
14 18
|
mpbi |
⊢ - ( 1 / 9 ) < 0 |
| 20 |
|
recoscl |
⊢ ( 2 ∈ ℝ → ( cos ‘ 2 ) ∈ ℝ ) |
| 21 |
1 20
|
ax-mp |
⊢ ( cos ‘ 2 ) ∈ ℝ |
| 22 |
16
|
renegcli |
⊢ - ( 1 / 9 ) ∈ ℝ |
| 23 |
|
0re |
⊢ 0 ∈ ℝ |
| 24 |
21 22 23
|
lttri |
⊢ ( ( ( cos ‘ 2 ) < - ( 1 / 9 ) ∧ - ( 1 / 9 ) < 0 ) → ( cos ‘ 2 ) < 0 ) |
| 25 |
11 19 24
|
mp2an |
⊢ ( cos ‘ 2 ) < 0 |
| 26 |
9 25
|
pm3.2i |
⊢ ( 0 < ( sin ‘ 2 ) ∧ ( cos ‘ 2 ) < 0 ) |