Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
|
2cn |
⊢ 2 ∈ ℂ |
3 |
|
2ne0 |
⊢ 2 ≠ 0 |
4 |
2 3
|
reccli |
⊢ ( 1 / 2 ) ∈ ℂ |
5 |
|
3cn |
⊢ 3 ∈ ℂ |
6 |
|
3ne0 |
⊢ 3 ≠ 0 |
7 |
5 6
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
8 |
1 4 7
|
subdii |
⊢ ( π · ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( ( π · ( 1 / 2 ) ) − ( π · ( 1 / 3 ) ) ) |
9 |
|
halfthird |
⊢ ( ( 1 / 2 ) − ( 1 / 3 ) ) = ( 1 / 6 ) |
10 |
9
|
oveq2i |
⊢ ( π · ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( π · ( 1 / 6 ) ) |
11 |
8 10
|
eqtr3i |
⊢ ( ( π · ( 1 / 2 ) ) − ( π · ( 1 / 3 ) ) ) = ( π · ( 1 / 6 ) ) |
12 |
1 2 3
|
divreci |
⊢ ( π / 2 ) = ( π · ( 1 / 2 ) ) |
13 |
1 5 6
|
divreci |
⊢ ( π / 3 ) = ( π · ( 1 / 3 ) ) |
14 |
12 13
|
oveq12i |
⊢ ( ( π / 2 ) − ( π / 3 ) ) = ( ( π · ( 1 / 2 ) ) − ( π · ( 1 / 3 ) ) ) |
15 |
|
6cn |
⊢ 6 ∈ ℂ |
16 |
|
6nn |
⊢ 6 ∈ ℕ |
17 |
16
|
nnne0i |
⊢ 6 ≠ 0 |
18 |
1 15 17
|
divreci |
⊢ ( π / 6 ) = ( π · ( 1 / 6 ) ) |
19 |
11 14 18
|
3eqtr4i |
⊢ ( ( π / 2 ) − ( π / 3 ) ) = ( π / 6 ) |
20 |
19
|
fveq2i |
⊢ ( cos ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( cos ‘ ( π / 6 ) ) |
21 |
1 5 6
|
divcli |
⊢ ( π / 3 ) ∈ ℂ |
22 |
|
coshalfpim |
⊢ ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( sin ‘ ( π / 3 ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( cos ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( sin ‘ ( π / 3 ) ) |
24 |
|
sincos6thpi |
⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
25 |
24
|
simpri |
⊢ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) |
26 |
20 23 25
|
3eqtr3i |
⊢ ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) |
27 |
19
|
fveq2i |
⊢ ( sin ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( sin ‘ ( π / 6 ) ) |
28 |
|
sinhalfpim |
⊢ ( ( π / 3 ) ∈ ℂ → ( sin ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( cos ‘ ( π / 3 ) ) ) |
29 |
21 28
|
ax-mp |
⊢ ( sin ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( cos ‘ ( π / 3 ) ) |
30 |
24
|
simpli |
⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
31 |
27 29 30
|
3eqtr3i |
⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
32 |
26 31
|
pm3.2i |
⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |