| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 2 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 3 |  | 2halves | ⊢ ( 1  ∈  ℂ  →  ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 | 
						
							| 5 |  | sincosq1eq | ⊢ ( ( ( 1  /  2 )  ∈  ℂ  ∧  ( 1  /  2 )  ∈  ℂ  ∧  ( ( 1  /  2 )  +  ( 1  /  2 ) )  =  1 )  →  ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  =  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) | 
						
							| 6 | 1 1 4 5 | mp3an | ⊢ ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  =  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) | 
						
							| 7 | 6 | oveq2i | ⊢ ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) )  =  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) | 
						
							| 8 | 7 | oveq2i | ⊢ ( 2  ·  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) )  =  ( 2  ·  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) ) | 
						
							| 9 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 10 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 11 | 10 | recni | ⊢ π  ∈  ℂ | 
						
							| 12 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 13 | 2 9 11 9 12 12 | divmuldivi | ⊢ ( ( 1  /  2 )  ·  ( π  /  2 ) )  =  ( ( 1  ·  π )  /  ( 2  ·  2 ) ) | 
						
							| 14 | 11 | mullidi | ⊢ ( 1  ·  π )  =  π | 
						
							| 15 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 16 | 14 15 | oveq12i | ⊢ ( ( 1  ·  π )  /  ( 2  ·  2 ) )  =  ( π  /  4 ) | 
						
							| 17 | 13 16 | eqtri | ⊢ ( ( 1  /  2 )  ·  ( π  /  2 ) )  =  ( π  /  4 ) | 
						
							| 18 | 17 | fveq2i | ⊢ ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  =  ( sin ‘ ( π  /  4 ) ) | 
						
							| 19 | 18 18 | oveq12i | ⊢ ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) )  =  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) | 
						
							| 20 | 19 | oveq2i | ⊢ ( 2  ·  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) )  =  ( 2  ·  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) | 
						
							| 21 | 9 12 | recidi | ⊢ ( 2  ·  ( 1  /  2 ) )  =  1 | 
						
							| 22 | 21 | oveq1i | ⊢ ( ( 2  ·  ( 1  /  2 ) )  ·  ( π  /  2 ) )  =  ( 1  ·  ( π  /  2 ) ) | 
						
							| 23 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 24 | 10 23 12 | redivcli | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 25 | 24 | recni | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 26 | 9 1 25 | mulassi | ⊢ ( ( 2  ·  ( 1  /  2 ) )  ·  ( π  /  2 ) )  =  ( 2  ·  ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) | 
						
							| 27 | 25 | mullidi | ⊢ ( 1  ·  ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 28 | 22 26 27 | 3eqtr3i | ⊢ ( 2  ·  ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  =  ( π  /  2 ) | 
						
							| 29 | 28 | fveq2i | ⊢ ( sin ‘ ( 2  ·  ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) )  =  ( sin ‘ ( π  /  2 ) ) | 
						
							| 30 | 1 25 | mulcli | ⊢ ( ( 1  /  2 )  ·  ( π  /  2 ) )  ∈  ℂ | 
						
							| 31 |  | sin2t | ⊢ ( ( ( 1  /  2 )  ·  ( π  /  2 ) )  ∈  ℂ  →  ( sin ‘ ( 2  ·  ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) )  =  ( 2  ·  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) ) ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ ( sin ‘ ( 2  ·  ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) )  =  ( 2  ·  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) ) | 
						
							| 33 |  | sinhalfpi | ⊢ ( sin ‘ ( π  /  2 ) )  =  1 | 
						
							| 34 | 29 32 33 | 3eqtr3i | ⊢ ( 2  ·  ( ( sin ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  ·  ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) ) ) )  =  1 | 
						
							| 35 | 8 20 34 | 3eqtr3i | ⊢ ( 2  ·  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  =  1 | 
						
							| 36 | 35 | fveq2i | ⊢ ( √ ‘ ( 2  ·  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) )  =  ( √ ‘ 1 ) | 
						
							| 37 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 38 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 39 | 10 37 38 | redivcli | ⊢ ( π  /  4 )  ∈  ℝ | 
						
							| 40 |  | resincl | ⊢ ( ( π  /  4 )  ∈  ℝ  →  ( sin ‘ ( π  /  4 ) )  ∈  ℝ ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ ( sin ‘ ( π  /  4 ) )  ∈  ℝ | 
						
							| 42 | 41 41 | remulcli | ⊢ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) )  ∈  ℝ | 
						
							| 43 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 44 | 41 | msqge0i | ⊢ 0  ≤  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) | 
						
							| 45 | 23 42 43 44 | sqrtmulii | ⊢ ( √ ‘ ( 2  ·  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) )  =  ( ( √ ‘ 2 )  ·  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) ) | 
						
							| 46 |  | sqrt1 | ⊢ ( √ ‘ 1 )  =  1 | 
						
							| 47 | 36 45 46 | 3eqtr3ri | ⊢ 1  =  ( ( √ ‘ 2 )  ·  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) ) | 
						
							| 48 | 42 | sqrtcli | ⊢ ( 0  ≤  ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) )  →  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  ∈  ℝ ) | 
						
							| 49 | 44 48 | ax-mp | ⊢ ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  ∈  ℝ | 
						
							| 50 | 49 | recni | ⊢ ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  ∈  ℂ | 
						
							| 51 |  | sqrt2re | ⊢ ( √ ‘ 2 )  ∈  ℝ | 
						
							| 52 | 51 | recni | ⊢ ( √ ‘ 2 )  ∈  ℂ | 
						
							| 53 |  | sqrt00 | ⊢ ( ( 2  ∈  ℝ  ∧  0  ≤  2 )  →  ( ( √ ‘ 2 )  =  0  ↔  2  =  0 ) ) | 
						
							| 54 | 23 43 53 | mp2an | ⊢ ( ( √ ‘ 2 )  =  0  ↔  2  =  0 ) | 
						
							| 55 | 54 | necon3bii | ⊢ ( ( √ ‘ 2 )  ≠  0  ↔  2  ≠  0 ) | 
						
							| 56 | 12 55 | mpbir | ⊢ ( √ ‘ 2 )  ≠  0 | 
						
							| 57 | 52 56 | pm3.2i | ⊢ ( ( √ ‘ 2 )  ∈  ℂ  ∧  ( √ ‘ 2 )  ≠  0 ) | 
						
							| 58 |  | divmul2 | ⊢ ( ( 1  ∈  ℂ  ∧  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  ∈  ℂ  ∧  ( ( √ ‘ 2 )  ∈  ℂ  ∧  ( √ ‘ 2 )  ≠  0 ) )  →  ( ( 1  /  ( √ ‘ 2 ) )  =  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  ↔  1  =  ( ( √ ‘ 2 )  ·  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) ) ) ) | 
						
							| 59 | 2 50 57 58 | mp3an | ⊢ ( ( 1  /  ( √ ‘ 2 ) )  =  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  ↔  1  =  ( ( √ ‘ 2 )  ·  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) ) ) | 
						
							| 60 | 47 59 | mpbir | ⊢ ( 1  /  ( √ ‘ 2 ) )  =  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) ) | 
						
							| 61 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 62 |  | pipos | ⊢ 0  <  π | 
						
							| 63 |  | 4pos | ⊢ 0  <  4 | 
						
							| 64 | 10 37 62 63 | divgt0ii | ⊢ 0  <  ( π  /  4 ) | 
						
							| 65 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 66 |  | pigt2lt4 | ⊢ ( 2  <  π  ∧  π  <  4 ) | 
						
							| 67 | 66 | simpri | ⊢ π  <  4 | 
						
							| 68 | 10 37 37 63 | ltdiv1ii | ⊢ ( π  <  4  ↔  ( π  /  4 )  <  ( 4  /  4 ) ) | 
						
							| 69 | 67 68 | mpbi | ⊢ ( π  /  4 )  <  ( 4  /  4 ) | 
						
							| 70 | 37 | recni | ⊢ 4  ∈  ℂ | 
						
							| 71 | 70 38 | dividi | ⊢ ( 4  /  4 )  =  1 | 
						
							| 72 | 69 71 | breqtri | ⊢ ( π  /  4 )  <  1 | 
						
							| 73 | 39 65 72 | ltleii | ⊢ ( π  /  4 )  ≤  1 | 
						
							| 74 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 75 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( ( π  /  4 )  ∈  ( 0 (,] 1 )  ↔  ( ( π  /  4 )  ∈  ℝ  ∧  0  <  ( π  /  4 )  ∧  ( π  /  4 )  ≤  1 ) ) ) | 
						
							| 76 | 74 65 75 | mp2an | ⊢ ( ( π  /  4 )  ∈  ( 0 (,] 1 )  ↔  ( ( π  /  4 )  ∈  ℝ  ∧  0  <  ( π  /  4 )  ∧  ( π  /  4 )  ≤  1 ) ) | 
						
							| 77 | 39 64 73 76 | mpbir3an | ⊢ ( π  /  4 )  ∈  ( 0 (,] 1 ) | 
						
							| 78 |  | sin01gt0 | ⊢ ( ( π  /  4 )  ∈  ( 0 (,] 1 )  →  0  <  ( sin ‘ ( π  /  4 ) ) ) | 
						
							| 79 | 77 78 | ax-mp | ⊢ 0  <  ( sin ‘ ( π  /  4 ) ) | 
						
							| 80 | 61 41 79 | ltleii | ⊢ 0  ≤  ( sin ‘ ( π  /  4 ) ) | 
						
							| 81 | 41 | sqrtmsqi | ⊢ ( 0  ≤  ( sin ‘ ( π  /  4 ) )  →  ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  =  ( sin ‘ ( π  /  4 ) ) ) | 
						
							| 82 | 80 81 | ax-mp | ⊢ ( √ ‘ ( ( sin ‘ ( π  /  4 ) )  ·  ( sin ‘ ( π  /  4 ) ) ) )  =  ( sin ‘ ( π  /  4 ) ) | 
						
							| 83 | 60 82 | eqtr2i | ⊢ ( sin ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) | 
						
							| 84 | 60 82 | eqtri | ⊢ ( 1  /  ( √ ‘ 2 ) )  =  ( sin ‘ ( π  /  4 ) ) | 
						
							| 85 | 17 | fveq2i | ⊢ ( cos ‘ ( ( 1  /  2 )  ·  ( π  /  2 ) ) )  =  ( cos ‘ ( π  /  4 ) ) | 
						
							| 86 | 6 18 85 | 3eqtr3i | ⊢ ( sin ‘ ( π  /  4 ) )  =  ( cos ‘ ( π  /  4 ) ) | 
						
							| 87 | 84 86 | eqtr2i | ⊢ ( cos ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) | 
						
							| 88 | 83 87 | pm3.2i | ⊢ ( ( sin ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) )  ∧  ( cos ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) ) |