Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
⊢ 2 ∈ ℂ |
2 |
|
pire |
⊢ π ∈ ℝ |
3 |
|
6re |
⊢ 6 ∈ ℝ |
4 |
|
6pos |
⊢ 0 < 6 |
5 |
3 4
|
gt0ne0ii |
⊢ 6 ≠ 0 |
6 |
2 3 5
|
redivcli |
⊢ ( π / 6 ) ∈ ℝ |
7 |
6
|
recni |
⊢ ( π / 6 ) ∈ ℂ |
8 |
|
sincl |
⊢ ( ( π / 6 ) ∈ ℂ → ( sin ‘ ( π / 6 ) ) ∈ ℂ ) |
9 |
7 8
|
ax-mp |
⊢ ( sin ‘ ( π / 6 ) ) ∈ ℂ |
10 |
|
2ne0 |
⊢ 2 ≠ 0 |
11 |
|
recoscl |
⊢ ( ( π / 6 ) ∈ ℝ → ( cos ‘ ( π / 6 ) ) ∈ ℝ ) |
12 |
6 11
|
ax-mp |
⊢ ( cos ‘ ( π / 6 ) ) ∈ ℝ |
13 |
12
|
recni |
⊢ ( cos ‘ ( π / 6 ) ) ∈ ℂ |
14 |
1 9 13
|
mulassi |
⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 2 · ( ( sin ‘ ( π / 6 ) ) · ( cos ‘ ( π / 6 ) ) ) ) |
15 |
|
sin2t |
⊢ ( ( π / 6 ) ∈ ℂ → ( sin ‘ ( 2 · ( π / 6 ) ) ) = ( 2 · ( ( sin ‘ ( π / 6 ) ) · ( cos ‘ ( π / 6 ) ) ) ) ) |
16 |
7 15
|
ax-mp |
⊢ ( sin ‘ ( 2 · ( π / 6 ) ) ) = ( 2 · ( ( sin ‘ ( π / 6 ) ) · ( cos ‘ ( π / 6 ) ) ) ) |
17 |
14 16
|
eqtr4i |
⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( sin ‘ ( 2 · ( π / 6 ) ) ) |
18 |
|
3cn |
⊢ 3 ∈ ℂ |
19 |
|
3ne0 |
⊢ 3 ≠ 0 |
20 |
1 18 19
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
21 |
18 19
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
22 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
23 |
22
|
oveq1i |
⊢ ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
24 |
18 19
|
dividi |
⊢ ( 3 / 3 ) = 1 |
25 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
26 |
1 25 18 19
|
divdiri |
⊢ ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
27 |
23 24 26
|
3eqtr3ri |
⊢ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
28 |
|
sincosq1eq |
⊢ ( ( ( 2 / 3 ) ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ∧ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) → ( sin ‘ ( ( 2 / 3 ) · ( π / 2 ) ) ) = ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) ) |
29 |
20 21 27 28
|
mp3an |
⊢ ( sin ‘ ( ( 2 / 3 ) · ( π / 2 ) ) ) = ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) |
30 |
|
picn |
⊢ π ∈ ℂ |
31 |
1 18 30 1 19 10
|
divmuldivi |
⊢ ( ( 2 / 3 ) · ( π / 2 ) ) = ( ( 2 · π ) / ( 3 · 2 ) ) |
32 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
33 |
32
|
oveq2i |
⊢ ( ( 2 · π ) / ( 3 · 2 ) ) = ( ( 2 · π ) / 6 ) |
34 |
|
6cn |
⊢ 6 ∈ ℂ |
35 |
1 30 34 5
|
divassi |
⊢ ( ( 2 · π ) / 6 ) = ( 2 · ( π / 6 ) ) |
36 |
31 33 35
|
3eqtri |
⊢ ( ( 2 / 3 ) · ( π / 2 ) ) = ( 2 · ( π / 6 ) ) |
37 |
36
|
fveq2i |
⊢ ( sin ‘ ( ( 2 / 3 ) · ( π / 2 ) ) ) = ( sin ‘ ( 2 · ( π / 6 ) ) ) |
38 |
29 37
|
eqtr3i |
⊢ ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) = ( sin ‘ ( 2 · ( π / 6 ) ) ) |
39 |
25 18 30 1 19 10
|
divmuldivi |
⊢ ( ( 1 / 3 ) · ( π / 2 ) ) = ( ( 1 · π ) / ( 3 · 2 ) ) |
40 |
30
|
mulid2i |
⊢ ( 1 · π ) = π |
41 |
40 32
|
oveq12i |
⊢ ( ( 1 · π ) / ( 3 · 2 ) ) = ( π / 6 ) |
42 |
39 41
|
eqtri |
⊢ ( ( 1 / 3 ) · ( π / 2 ) ) = ( π / 6 ) |
43 |
42
|
fveq2i |
⊢ ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) = ( cos ‘ ( π / 6 ) ) |
44 |
38 43
|
eqtr3i |
⊢ ( sin ‘ ( 2 · ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
45 |
17 44
|
eqtri |
⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
46 |
13
|
mulid2i |
⊢ ( 1 · ( cos ‘ ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
47 |
45 46
|
eqtr4i |
⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 1 · ( cos ‘ ( π / 6 ) ) ) |
48 |
1 9
|
mulcli |
⊢ ( 2 · ( sin ‘ ( π / 6 ) ) ) ∈ ℂ |
49 |
|
pipos |
⊢ 0 < π |
50 |
2 3 49 4
|
divgt0ii |
⊢ 0 < ( π / 6 ) |
51 |
|
2lt6 |
⊢ 2 < 6 |
52 |
|
2re |
⊢ 2 ∈ ℝ |
53 |
|
2pos |
⊢ 0 < 2 |
54 |
52 53
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
55 |
3 4
|
pm3.2i |
⊢ ( 6 ∈ ℝ ∧ 0 < 6 ) |
56 |
2 49
|
pm3.2i |
⊢ ( π ∈ ℝ ∧ 0 < π ) |
57 |
|
ltdiv2 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 < 2 ) ∧ ( 6 ∈ ℝ ∧ 0 < 6 ) ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( 2 < 6 ↔ ( π / 6 ) < ( π / 2 ) ) ) |
58 |
54 55 56 57
|
mp3an |
⊢ ( 2 < 6 ↔ ( π / 6 ) < ( π / 2 ) ) |
59 |
51 58
|
mpbi |
⊢ ( π / 6 ) < ( π / 2 ) |
60 |
|
0re |
⊢ 0 ∈ ℝ |
61 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
62 |
|
rexr |
⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) |
63 |
|
rexr |
⊢ ( ( π / 2 ) ∈ ℝ → ( π / 2 ) ∈ ℝ* ) |
64 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ 0 < ( π / 6 ) ∧ ( π / 6 ) < ( π / 2 ) ) ) ) |
65 |
62 63 64
|
syl2an |
⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ 0 < ( π / 6 ) ∧ ( π / 6 ) < ( π / 2 ) ) ) ) |
66 |
60 61 65
|
mp2an |
⊢ ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ 0 < ( π / 6 ) ∧ ( π / 6 ) < ( π / 2 ) ) ) |
67 |
6 50 59 66
|
mpbir3an |
⊢ ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) |
68 |
|
sincosq1sgn |
⊢ ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ ( π / 6 ) ) ∧ 0 < ( cos ‘ ( π / 6 ) ) ) ) |
69 |
67 68
|
ax-mp |
⊢ ( 0 < ( sin ‘ ( π / 6 ) ) ∧ 0 < ( cos ‘ ( π / 6 ) ) ) |
70 |
69
|
simpri |
⊢ 0 < ( cos ‘ ( π / 6 ) ) |
71 |
12 70
|
gt0ne0ii |
⊢ ( cos ‘ ( π / 6 ) ) ≠ 0 |
72 |
13 71
|
pm3.2i |
⊢ ( ( cos ‘ ( π / 6 ) ) ∈ ℂ ∧ ( cos ‘ ( π / 6 ) ) ≠ 0 ) |
73 |
|
mulcan2 |
⊢ ( ( ( 2 · ( sin ‘ ( π / 6 ) ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( cos ‘ ( π / 6 ) ) ∈ ℂ ∧ ( cos ‘ ( π / 6 ) ) ≠ 0 ) ) → ( ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 1 · ( cos ‘ ( π / 6 ) ) ) ↔ ( 2 · ( sin ‘ ( π / 6 ) ) ) = 1 ) ) |
74 |
48 25 72 73
|
mp3an |
⊢ ( ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 1 · ( cos ‘ ( π / 6 ) ) ) ↔ ( 2 · ( sin ‘ ( π / 6 ) ) ) = 1 ) |
75 |
47 74
|
mpbi |
⊢ ( 2 · ( sin ‘ ( π / 6 ) ) ) = 1 |
76 |
1 9 10 75
|
mvllmuli |
⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
77 |
|
3re |
⊢ 3 ∈ ℝ |
78 |
|
3pos |
⊢ 0 < 3 |
79 |
77 78
|
sqrtpclii |
⊢ ( √ ‘ 3 ) ∈ ℝ |
80 |
79
|
recni |
⊢ ( √ ‘ 3 ) ∈ ℂ |
81 |
80 1 10
|
sqdivi |
⊢ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) = ( ( ( √ ‘ 3 ) ↑ 2 ) / ( 2 ↑ 2 ) ) |
82 |
60 77 78
|
ltleii |
⊢ 0 ≤ 3 |
83 |
77
|
sqsqrti |
⊢ ( 0 ≤ 3 → ( ( √ ‘ 3 ) ↑ 2 ) = 3 ) |
84 |
82 83
|
ax-mp |
⊢ ( ( √ ‘ 3 ) ↑ 2 ) = 3 |
85 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
86 |
84 85
|
oveq12i |
⊢ ( ( ( √ ‘ 3 ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( 3 / 4 ) |
87 |
81 86
|
eqtri |
⊢ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) = ( 3 / 4 ) |
88 |
87
|
fveq2i |
⊢ ( √ ‘ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) ) = ( √ ‘ ( 3 / 4 ) ) |
89 |
77
|
sqrtge0i |
⊢ ( 0 ≤ 3 → 0 ≤ ( √ ‘ 3 ) ) |
90 |
82 89
|
ax-mp |
⊢ 0 ≤ ( √ ‘ 3 ) |
91 |
79 52
|
divge0i |
⊢ ( ( 0 ≤ ( √ ‘ 3 ) ∧ 0 < 2 ) → 0 ≤ ( ( √ ‘ 3 ) / 2 ) ) |
92 |
90 53 91
|
mp2an |
⊢ 0 ≤ ( ( √ ‘ 3 ) / 2 ) |
93 |
79 52 10
|
redivcli |
⊢ ( ( √ ‘ 3 ) / 2 ) ∈ ℝ |
94 |
93
|
sqrtsqi |
⊢ ( 0 ≤ ( ( √ ‘ 3 ) / 2 ) → ( √ ‘ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
95 |
92 94
|
ax-mp |
⊢ ( √ ‘ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) ) = ( ( √ ‘ 3 ) / 2 ) |
96 |
|
4cn |
⊢ 4 ∈ ℂ |
97 |
|
4ne0 |
⊢ 4 ≠ 0 |
98 |
96 97
|
dividi |
⊢ ( 4 / 4 ) = 1 |
99 |
98
|
oveq1i |
⊢ ( ( 4 / 4 ) − ( 1 / 4 ) ) = ( 1 − ( 1 / 4 ) ) |
100 |
96 97
|
pm3.2i |
⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
101 |
|
divsubdir |
⊢ ( ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 4 − 1 ) / 4 ) = ( ( 4 / 4 ) − ( 1 / 4 ) ) ) |
102 |
96 25 100 101
|
mp3an |
⊢ ( ( 4 − 1 ) / 4 ) = ( ( 4 / 4 ) − ( 1 / 4 ) ) |
103 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
104 |
103
|
oveq1i |
⊢ ( ( 4 − 1 ) / 4 ) = ( 3 / 4 ) |
105 |
102 104
|
eqtr3i |
⊢ ( ( 4 / 4 ) − ( 1 / 4 ) ) = ( 3 / 4 ) |
106 |
96 97
|
reccli |
⊢ ( 1 / 4 ) ∈ ℂ |
107 |
13
|
sqcli |
⊢ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ∈ ℂ |
108 |
76
|
oveq1i |
⊢ ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) = ( ( 1 / 2 ) ↑ 2 ) |
109 |
1 10
|
sqrecii |
⊢ ( ( 1 / 2 ) ↑ 2 ) = ( 1 / ( 2 ↑ 2 ) ) |
110 |
85
|
oveq2i |
⊢ ( 1 / ( 2 ↑ 2 ) ) = ( 1 / 4 ) |
111 |
108 109 110
|
3eqtri |
⊢ ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) = ( 1 / 4 ) |
112 |
111
|
oveq1i |
⊢ ( ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( ( 1 / 4 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) |
113 |
|
sincossq |
⊢ ( ( π / 6 ) ∈ ℂ → ( ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = 1 ) |
114 |
7 113
|
ax-mp |
⊢ ( ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = 1 |
115 |
112 114
|
eqtr3i |
⊢ ( ( 1 / 4 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = 1 |
116 |
25 106 107 115
|
subaddrii |
⊢ ( 1 − ( 1 / 4 ) ) = ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) |
117 |
99 105 116
|
3eqtr3ri |
⊢ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) = ( 3 / 4 ) |
118 |
117
|
fveq2i |
⊢ ( √ ‘ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( √ ‘ ( 3 / 4 ) ) |
119 |
60 12 70
|
ltleii |
⊢ 0 ≤ ( cos ‘ ( π / 6 ) ) |
120 |
12
|
sqrtsqi |
⊢ ( 0 ≤ ( cos ‘ ( π / 6 ) ) → ( √ ‘ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( cos ‘ ( π / 6 ) ) ) |
121 |
119 120
|
ax-mp |
⊢ ( √ ‘ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( cos ‘ ( π / 6 ) ) |
122 |
118 121
|
eqtr3i |
⊢ ( √ ‘ ( 3 / 4 ) ) = ( cos ‘ ( π / 6 ) ) |
123 |
88 95 122
|
3eqtr3ri |
⊢ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) |
124 |
76 123
|
pm3.2i |
⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |