Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
2 |
|
ltle |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ ( π / 2 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ ( π / 2 ) ) ) |
4 |
|
pire |
⊢ π ∈ ℝ |
5 |
|
4re |
⊢ 4 ∈ ℝ |
6 |
|
pigt2lt4 |
⊢ ( 2 < π ∧ π < 4 ) |
7 |
6
|
simpri |
⊢ π < 4 |
8 |
4 5 7
|
ltleii |
⊢ π ≤ 4 |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
9 10
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
12 |
|
ledivmul |
⊢ ( ( π ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( π / 2 ) ≤ 2 ↔ π ≤ ( 2 · 2 ) ) ) |
13 |
4 9 11 12
|
mp3an |
⊢ ( ( π / 2 ) ≤ 2 ↔ π ≤ ( 2 · 2 ) ) |
14 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
15 |
14
|
breq2i |
⊢ ( π ≤ ( 2 · 2 ) ↔ π ≤ 4 ) |
16 |
13 15
|
bitri |
⊢ ( ( π / 2 ) ≤ 2 ↔ π ≤ 4 ) |
17 |
8 16
|
mpbir |
⊢ ( π / 2 ) ≤ 2 |
18 |
|
letr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 𝐴 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ 2 ) → 𝐴 ≤ 2 ) ) |
19 |
1 9 18
|
mp3an23 |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ 2 ) → 𝐴 ≤ 2 ) ) |
20 |
17 19
|
mpan2i |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( π / 2 ) → 𝐴 ≤ 2 ) ) |
21 |
3 20
|
syld |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ 2 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ 2 ) ) |
23 |
22
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 𝐴 ≤ 2 ) |
24 |
|
0xr |
⊢ 0 ∈ ℝ* |
25 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) ) |
26 |
24 9 25
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) |
27 |
|
sin02gt0 |
⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝐴 ) ) |
28 |
26 27
|
sylbir |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → 0 < ( sin ‘ 𝐴 ) ) |
29 |
23 28
|
syld3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 0 < ( sin ‘ 𝐴 ) ) |