| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 2 |  | ltle | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( π  /  2 )  ∈  ℝ )  →  ( 𝐴  <  ( π  /  2 )  →  𝐴  ≤  ( π  /  2 ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  ( π  /  2 )  →  𝐴  ≤  ( π  /  2 ) ) ) | 
						
							| 4 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 5 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 6 |  | pigt2lt4 | ⊢ ( 2  <  π  ∧  π  <  4 ) | 
						
							| 7 | 6 | simpri | ⊢ π  <  4 | 
						
							| 8 | 4 5 7 | ltleii | ⊢ π  ≤  4 | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 12 |  | ledivmul | ⊢ ( ( π  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( π  /  2 )  ≤  2  ↔  π  ≤  ( 2  ·  2 ) ) ) | 
						
							| 13 | 4 9 11 12 | mp3an | ⊢ ( ( π  /  2 )  ≤  2  ↔  π  ≤  ( 2  ·  2 ) ) | 
						
							| 14 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 15 | 14 | breq2i | ⊢ ( π  ≤  ( 2  ·  2 )  ↔  π  ≤  4 ) | 
						
							| 16 | 13 15 | bitri | ⊢ ( ( π  /  2 )  ≤  2  ↔  π  ≤  4 ) | 
						
							| 17 | 8 16 | mpbir | ⊢ ( π  /  2 )  ≤  2 | 
						
							| 18 |  | letr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( π  /  2 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( 𝐴  ≤  ( π  /  2 )  ∧  ( π  /  2 )  ≤  2 )  →  𝐴  ≤  2 ) ) | 
						
							| 19 | 1 9 18 | mp3an23 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴  ≤  ( π  /  2 )  ∧  ( π  /  2 )  ≤  2 )  →  𝐴  ≤  2 ) ) | 
						
							| 20 | 17 19 | mpan2i | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≤  ( π  /  2 )  →  𝐴  ≤  2 ) ) | 
						
							| 21 | 3 20 | syld | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  ( π  /  2 )  →  𝐴  ≤  2 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 𝐴  <  ( π  /  2 )  →  𝐴  ≤  2 ) ) | 
						
							| 23 | 22 | 3impia | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  ( π  /  2 ) )  →  𝐴  ≤  2 ) | 
						
							| 24 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 25 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  2  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 2 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 ) ) ) | 
						
							| 26 | 24 9 25 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 ) ) | 
						
							| 27 |  | sin02gt0 | ⊢ ( 𝐴  ∈  ( 0 (,] 2 )  →  0  <  ( sin ‘ 𝐴 ) ) | 
						
							| 28 | 26 27 | sylbir | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  2 )  →  0  <  ( sin ‘ 𝐴 ) ) | 
						
							| 29 | 23 28 | syld3an3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  ( π  /  2 ) )  →  0  <  ( sin ‘ 𝐴 ) ) |