Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
2 |
|
cosadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
3 |
1 2
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
4 |
|
negid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) |
5 |
4
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = ( cos ‘ 0 ) ) |
6 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + - 𝐴 ) ) = 1 ) |
8 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
9 |
8
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
10 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
11 |
10
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
12 |
9 11
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
13 |
10
|
sqvald |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
14 |
|
cosneg |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐴 ) ) ) |
16 |
13 15
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) ) |
17 |
8
|
sqvald |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) |
18 |
|
sinneg |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
19 |
18
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ - 𝐴 ) = - - ( sin ‘ 𝐴 ) ) |
20 |
8
|
negnegd |
⊢ ( 𝐴 ∈ ℂ → - - ( sin ‘ 𝐴 ) = ( sin ‘ 𝐴 ) ) |
21 |
19 20
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ - 𝐴 ) = ( sin ‘ 𝐴 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · - ( sin ‘ - 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐴 ) ) ) |
23 |
17 22
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( ( sin ‘ 𝐴 ) · - ( sin ‘ - 𝐴 ) ) ) |
24 |
1
|
sincld |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) ∈ ℂ ) |
25 |
8 24
|
mulneg2d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · - ( sin ‘ - 𝐴 ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) |
26 |
23 25
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) |
27 |
16 26
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
28 |
1
|
coscld |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) ∈ ℂ ) |
29 |
10 28
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) ∈ ℂ ) |
30 |
8 24
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ∈ ℂ ) |
31 |
29 30
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) ) |
32 |
12 27 31
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐴 ) ) ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
33 |
3 7 32
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |