| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 2 |  | cosadd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( cos ‘ ( 𝐴  +  - 𝐴 ) )  =  ( ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  −  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) ) ) | 
						
							| 3 | 1 2 | mpdan | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 𝐴  +  - 𝐴 ) )  =  ( ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  −  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) ) ) | 
						
							| 4 |  | negid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 𝐴  +  - 𝐴 ) )  =  ( cos ‘ 0 ) ) | 
						
							| 6 |  | cos0 | ⊢ ( cos ‘ 0 )  =  1 | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 𝐴  +  - 𝐴 ) )  =  1 ) | 
						
							| 8 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 | 8 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 10 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 11 | 10 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 12 | 9 11 | addcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  +  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 13 | 10 | sqvald | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  =  ( ( cos ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) | 
						
							| 14 |  | cosneg | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ - 𝐴 )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  =  ( ( cos ‘ 𝐴 )  ·  ( cos ‘ 𝐴 ) ) ) | 
						
							| 16 | 13 15 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  =  ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) ) ) | 
						
							| 17 | 8 | sqvald | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  =  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ 𝐴 ) ) ) | 
						
							| 18 |  | sinneg | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ - 𝐴 )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 19 | 18 | negeqd | ⊢ ( 𝐴  ∈  ℂ  →  - ( sin ‘ - 𝐴 )  =  - - ( sin ‘ 𝐴 ) ) | 
						
							| 20 | 8 | negnegd | ⊢ ( 𝐴  ∈  ℂ  →  - - ( sin ‘ 𝐴 )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 21 | 19 20 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  - ( sin ‘ - 𝐴 )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  - ( sin ‘ - 𝐴 ) )  =  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ 𝐴 ) ) ) | 
						
							| 23 | 17 22 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  =  ( ( sin ‘ 𝐴 )  ·  - ( sin ‘ - 𝐴 ) ) ) | 
						
							| 24 | 1 | sincld | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 25 | 8 24 | mulneg2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  - ( sin ‘ - 𝐴 ) )  =  - ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) ) | 
						
							| 26 | 23 25 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  =  - ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) ) | 
						
							| 27 | 16 26 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  +  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  +  - ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) ) ) | 
						
							| 28 | 1 | coscld | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 29 | 10 28 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 30 | 8 24 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 31 | 29 30 | negsubd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  +  - ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) )  =  ( ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  −  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) ) ) | 
						
							| 32 | 12 27 31 | 3eqtrrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( cos ‘ 𝐴 )  ·  ( cos ‘ - 𝐴 ) )  −  ( ( sin ‘ 𝐴 )  ·  ( sin ‘ - 𝐴 ) ) )  =  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 33 | 3 7 32 | 3eqtr3rd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) |