Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
2 |
1
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
3 |
|
sinadd |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
5 |
|
sinhalfpi |
⊢ ( sin ‘ ( π / 2 ) ) = 1 |
6 |
5
|
oveq1i |
⊢ ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( 1 · ( cos ‘ 𝐴 ) ) |
7 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
8 |
7
|
mulid2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( cos ‘ 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
9 |
6 8
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |
10 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
11 |
10
|
oveq1i |
⊢ ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( 0 · ( sin ‘ 𝐴 ) ) |
12 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
13 |
12
|
mul02d |
⊢ ( 𝐴 ∈ ℂ → ( 0 · ( sin ‘ 𝐴 ) ) = 0 ) |
14 |
11 13
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = 0 ) |
15 |
9 14
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) + 0 ) ) |
16 |
7
|
addid1d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) + 0 ) = ( cos ‘ 𝐴 ) ) |
17 |
4 15 16
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( cos ‘ 𝐴 ) ) |