Metamath Proof Explorer


Theorem sinhalfpip

Description: The sine of _pi / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sinhalfpip ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( cos ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 halfpire ( π / 2 ) ∈ ℝ
2 1 recni ( π / 2 ) ∈ ℂ
3 sinadd ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) )
4 2 3 mpan ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) )
5 sinhalfpi ( sin ‘ ( π / 2 ) ) = 1
6 5 oveq1i ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( 1 · ( cos ‘ 𝐴 ) )
7 coscl ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )
8 7 mulid2d ( 𝐴 ∈ ℂ → ( 1 · ( cos ‘ 𝐴 ) ) = ( cos ‘ 𝐴 ) )
9 6 8 eqtrid ( 𝐴 ∈ ℂ → ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( cos ‘ 𝐴 ) )
10 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
11 10 oveq1i ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( 0 · ( sin ‘ 𝐴 ) )
12 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
13 12 mul02d ( 𝐴 ∈ ℂ → ( 0 · ( sin ‘ 𝐴 ) ) = 0 )
14 11 13 eqtrid ( 𝐴 ∈ ℂ → ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = 0 )
15 9 14 oveq12d ( 𝐴 ∈ ℂ → ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) + 0 ) )
16 7 addid1d ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) + 0 ) = ( cos ‘ 𝐴 ) )
17 4 15 16 3eqtrd ( 𝐴 ∈ ℂ → ( sin ‘ ( ( π / 2 ) + 𝐴 ) ) = ( cos ‘ 𝐴 ) )