Step |
Hyp |
Ref |
Expression |
1 |
|
ixi |
⊢ ( i · i ) = - 1 |
2 |
1
|
oveq1i |
⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
mulass |
⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
5 |
3 3 4
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
6 |
|
mulm1 |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
7 |
2 5 6
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( i · ( i · 𝐴 ) ) = - 𝐴 ) |
8 |
7
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( i · 𝐴 ) ) ) = ( exp ‘ - 𝐴 ) ) |
9 |
3 3
|
mulneg1i |
⊢ ( - i · i ) = - ( i · i ) |
10 |
1
|
negeqi |
⊢ - ( i · i ) = - - 1 |
11 |
|
negneg1e1 |
⊢ - - 1 = 1 |
12 |
10 11
|
eqtri |
⊢ - ( i · i ) = 1 |
13 |
9 12
|
eqtri |
⊢ ( - i · i ) = 1 |
14 |
13
|
oveq1i |
⊢ ( ( - i · i ) · 𝐴 ) = ( 1 · 𝐴 ) |
15 |
|
negicn |
⊢ - i ∈ ℂ |
16 |
|
mulass |
⊢ ( ( - i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
17 |
15 3 16
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
18 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
19 |
14 17 18
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
20 |
19
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( i · 𝐴 ) ) ) = ( exp ‘ 𝐴 ) ) |
21 |
8 20
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) = ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
23 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
24 |
3 23
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
25 |
|
sinval |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
26 |
24 25
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
27 |
|
irec |
⊢ ( 1 / i ) = - i |
28 |
27
|
negeqi |
⊢ - ( 1 / i ) = - - i |
29 |
3
|
negnegi |
⊢ - - i = i |
30 |
28 29
|
eqtri |
⊢ - ( 1 / i ) = i |
31 |
30
|
oveq1i |
⊢ ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
32 |
|
ine0 |
⊢ i ≠ 0 |
33 |
3 32
|
reccli |
⊢ ( 1 / i ) ∈ ℂ |
34 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
35 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
36 |
|
efcl |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
37 |
35 36
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
38 |
34 37
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
39 |
38
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℂ ) |
40 |
|
mulneg12 |
⊢ ( ( ( 1 / i ) ∈ ℂ ∧ ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℂ ) → ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
41 |
33 39 40
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
42 |
|
2cnd |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
43 |
|
2ne0 |
⊢ 2 ≠ 0 |
44 |
43
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
45 |
38 42 44
|
divnegd |
⊢ ( 𝐴 ∈ ℂ → - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) = ( - ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
46 |
34 37
|
negsubdi2d |
⊢ ( 𝐴 ∈ ℂ → - ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) = ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( - ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) |
48 |
45 47
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( 1 / i ) · ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) ) |
50 |
37 34
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) ∈ ℂ ) |
51 |
50
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
52 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
53 |
32
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ≠ 0 ) |
54 |
51 52 53
|
divrec2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) / i ) = ( ( 1 / i ) · ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) ) |
55 |
50 42 52 44 53
|
divdiv1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) / i ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
56 |
49 54 55
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
57 |
41 56
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
58 |
31 57
|
eqtr3id |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
59 |
22 26 58
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) = ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) / i ) ) |
61 |
39 52 53
|
divcan3d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
62 |
60 61
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |