| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 2 | 1 | oveq1i | ⊢ ( ( i  ·  i )  ·  𝐴 )  =  ( - 1  ·  𝐴 ) | 
						
							| 3 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 4 |  | mulass | ⊢ ( ( i  ∈  ℂ  ∧  i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( i  ·  i )  ·  𝐴 )  =  ( i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 5 | 3 3 4 | mp3an12 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  i )  ·  𝐴 )  =  ( i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 6 |  | mulm1 | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 7 | 2 5 6 | 3eqtr3a | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( i  ·  𝐴 ) )  =  - 𝐴 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  =  ( exp ‘ - 𝐴 ) ) | 
						
							| 9 | 3 3 | mulneg1i | ⊢ ( - i  ·  i )  =  - ( i  ·  i ) | 
						
							| 10 | 1 | negeqi | ⊢ - ( i  ·  i )  =  - - 1 | 
						
							| 11 |  | negneg1e1 | ⊢ - - 1  =  1 | 
						
							| 12 | 10 11 | eqtri | ⊢ - ( i  ·  i )  =  1 | 
						
							| 13 | 9 12 | eqtri | ⊢ ( - i  ·  i )  =  1 | 
						
							| 14 | 13 | oveq1i | ⊢ ( ( - i  ·  i )  ·  𝐴 )  =  ( 1  ·  𝐴 ) | 
						
							| 15 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 16 |  | mulass | ⊢ ( ( - i  ∈  ℂ  ∧  i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( - i  ·  i )  ·  𝐴 )  =  ( - i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 17 | 15 3 16 | mp3an12 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( - i  ·  i )  ·  𝐴 )  =  ( - i  ·  ( i  ·  𝐴 ) ) ) | 
						
							| 18 |  | mullid | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 19 | 14 17 18 | 3eqtr3a | ⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  ( i  ·  𝐴 ) )  =  𝐴 ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) )  =  ( exp ‘ 𝐴 ) ) | 
						
							| 21 | 8 20 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  −  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  =  ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  −  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  /  ( 2  ·  i ) )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  ( 2  ·  i ) ) ) | 
						
							| 23 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 24 | 3 23 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 25 |  | sinval | ⊢ ( ( i  ·  𝐴 )  ∈  ℂ  →  ( sin ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  −  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  /  ( 2  ·  i ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( i  ·  𝐴 ) ) )  −  ( exp ‘ ( - i  ·  ( i  ·  𝐴 ) ) ) )  /  ( 2  ·  i ) ) ) | 
						
							| 27 |  | irec | ⊢ ( 1  /  i )  =  - i | 
						
							| 28 | 27 | negeqi | ⊢ - ( 1  /  i )  =  - - i | 
						
							| 29 | 3 | negnegi | ⊢ - - i  =  i | 
						
							| 30 | 28 29 | eqtri | ⊢ - ( 1  /  i )  =  i | 
						
							| 31 | 30 | oveq1i | ⊢ ( - ( 1  /  i )  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( i  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 32 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 33 | 3 32 | reccli | ⊢ ( 1  /  i )  ∈  ℂ | 
						
							| 34 |  | efcl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 35 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 36 |  | efcl | ⊢ ( - 𝐴  ∈  ℂ  →  ( exp ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 38 | 34 37 | subcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 39 | 38 | halfcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 40 |  | mulneg12 | ⊢ ( ( ( 1  /  i )  ∈  ℂ  ∧  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  ∈  ℂ )  →  ( - ( 1  /  i )  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( 1  /  i )  ·  - ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 41 | 33 39 40 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( 1  /  i )  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( 1  /  i )  ·  - ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 42 |  | 2cnd | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℂ ) | 
						
							| 43 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 44 | 43 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ≠  0 ) | 
						
							| 45 | 38 42 44 | divnegd | ⊢ ( 𝐴  ∈  ℂ  →  - ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  =  ( - ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 46 | 34 37 | negsubdi2d | ⊢ ( 𝐴  ∈  ℂ  →  - ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  =  ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 48 | 45 47 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  - ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  /  i )  ·  - ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( 1  /  i )  ·  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 50 | 37 34 | subcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 51 | 50 | halfcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 52 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  i  ∈  ℂ ) | 
						
							| 53 | 32 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  i  ≠  0 ) | 
						
							| 54 | 51 52 53 | divrec2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 )  /  i )  =  ( ( 1  /  i )  ·  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 55 | 50 42 52 44 53 | divdiv1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  2 )  /  i )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  ( 2  ·  i ) ) ) | 
						
							| 56 | 49 54 55 | 3eqtr2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  /  i )  ·  - ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  ( 2  ·  i ) ) ) | 
						
							| 57 | 41 56 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( 1  /  i )  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  ( 2  ·  i ) ) ) | 
						
							| 58 | 31 57 | eqtr3id | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( ( exp ‘ - 𝐴 )  −  ( exp ‘ 𝐴 ) )  /  ( 2  ·  i ) ) ) | 
						
							| 59 | 22 26 58 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( i  ·  𝐴 ) )  =  ( i  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( i  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  /  i ) ) | 
						
							| 61 | 39 52 53 | divcan3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 62 | 60 61 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) |