| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) |
| 2 |
|
picn |
⊢ π ∈ ℂ |
| 3 |
|
mulcl |
⊢ ( ( 𝐾 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝐾 · π ) ∈ ℂ ) |
| 4 |
1 2 3
|
sylancl |
⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · π ) ∈ ℂ ) |
| 5 |
4
|
addlidd |
⊢ ( 𝐾 ∈ ℤ → ( 0 + ( 𝐾 · π ) ) = ( 𝐾 · π ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) = ( sin ‘ ( 𝐾 · π ) ) ) |
| 7 |
|
0cn |
⊢ 0 ∈ ℂ |
| 8 |
|
addcl |
⊢ ( ( 0 ∈ ℂ ∧ ( 𝐾 · π ) ∈ ℂ ) → ( 0 + ( 𝐾 · π ) ) ∈ ℂ ) |
| 9 |
7 4 8
|
sylancr |
⊢ ( 𝐾 ∈ ℤ → ( 0 + ( 𝐾 · π ) ) ∈ ℂ ) |
| 10 |
9
|
sincld |
⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ∈ ℂ ) |
| 11 |
|
abssinper |
⊢ ( ( 0 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( abs ‘ ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ) = ( abs ‘ ( sin ‘ 0 ) ) ) |
| 12 |
7 11
|
mpan |
⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ) = ( abs ‘ ( sin ‘ 0 ) ) ) |
| 13 |
|
sin0 |
⊢ ( sin ‘ 0 ) = 0 |
| 14 |
13
|
fveq2i |
⊢ ( abs ‘ ( sin ‘ 0 ) ) = ( abs ‘ 0 ) |
| 15 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 16 |
14 15
|
eqtri |
⊢ ( abs ‘ ( sin ‘ 0 ) ) = 0 |
| 17 |
12 16
|
eqtrdi |
⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ) = 0 ) |
| 18 |
10 17
|
abs00d |
⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) = 0 ) |
| 19 |
6 18
|
eqtr3d |
⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 𝐾 · π ) ) = 0 ) |