| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝐾  ∈  ℤ  →  𝐾  ∈  ℂ ) | 
						
							| 2 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 3 |  | mulcl | ⊢ ( ( 𝐾  ∈  ℂ  ∧  π  ∈  ℂ )  →  ( 𝐾  ·  π )  ∈  ℂ ) | 
						
							| 4 | 1 2 3 | sylancl | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  ·  π )  ∈  ℂ ) | 
						
							| 5 | 4 | addlidd | ⊢ ( 𝐾  ∈  ℤ  →  ( 0  +  ( 𝐾  ·  π ) )  =  ( 𝐾  ·  π ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝐾  ∈  ℤ  →  ( sin ‘ ( 0  +  ( 𝐾  ·  π ) ) )  =  ( sin ‘ ( 𝐾  ·  π ) ) ) | 
						
							| 7 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 8 |  | addcl | ⊢ ( ( 0  ∈  ℂ  ∧  ( 𝐾  ·  π )  ∈  ℂ )  →  ( 0  +  ( 𝐾  ·  π ) )  ∈  ℂ ) | 
						
							| 9 | 7 4 8 | sylancr | ⊢ ( 𝐾  ∈  ℤ  →  ( 0  +  ( 𝐾  ·  π ) )  ∈  ℂ ) | 
						
							| 10 | 9 | sincld | ⊢ ( 𝐾  ∈  ℤ  →  ( sin ‘ ( 0  +  ( 𝐾  ·  π ) ) )  ∈  ℂ ) | 
						
							| 11 |  | abssinper | ⊢ ( ( 0  ∈  ℂ  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( sin ‘ ( 0  +  ( 𝐾  ·  π ) ) ) )  =  ( abs ‘ ( sin ‘ 0 ) ) ) | 
						
							| 12 | 7 11 | mpan | ⊢ ( 𝐾  ∈  ℤ  →  ( abs ‘ ( sin ‘ ( 0  +  ( 𝐾  ·  π ) ) ) )  =  ( abs ‘ ( sin ‘ 0 ) ) ) | 
						
							| 13 |  | sin0 | ⊢ ( sin ‘ 0 )  =  0 | 
						
							| 14 | 13 | fveq2i | ⊢ ( abs ‘ ( sin ‘ 0 ) )  =  ( abs ‘ 0 ) | 
						
							| 15 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 16 | 14 15 | eqtri | ⊢ ( abs ‘ ( sin ‘ 0 ) )  =  0 | 
						
							| 17 | 12 16 | eqtrdi | ⊢ ( 𝐾  ∈  ℤ  →  ( abs ‘ ( sin ‘ ( 0  +  ( 𝐾  ·  π ) ) ) )  =  0 ) | 
						
							| 18 | 10 17 | abs00d | ⊢ ( 𝐾  ∈  ℤ  →  ( sin ‘ ( 0  +  ( 𝐾  ·  π ) ) )  =  0 ) | 
						
							| 19 | 6 18 | eqtr3d | ⊢ ( 𝐾  ∈  ℤ  →  ( sin ‘ ( 𝐾  ·  π ) )  =  0 ) |