| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 3 | 2 | resincld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  <  𝐴 )  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 |  | 1red | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  <  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 5 |  | sinbnd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( 𝐴  ∈  ℝ  →  ( sin ‘ 𝐴 )  ≤  1 ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝐴  ∈  ℝ+  →  ( sin ‘ 𝐴 )  ≤  1 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  <  𝐴 )  →  ( sin ‘ 𝐴 )  ≤  1 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  <  𝐴 )  →  1  <  𝐴 ) | 
						
							| 10 | 3 4 2 8 9 | lelttrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  <  𝐴 )  →  ( sin ‘ 𝐴 )  <  𝐴 ) | 
						
							| 11 |  | df-3an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 )  ↔  ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  𝐴  ≤  1 ) ) | 
						
							| 12 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 13 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 14 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) ) | 
						
							| 15 | 12 13 14 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) | 
						
							| 16 |  | elrp | ⊢ ( 𝐴  ∈  ℝ+  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 17 | 16 | anbi1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ↔  ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  𝐴  ≤  1 ) ) | 
						
							| 18 | 11 15 17 | 3bitr4i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 ) ) | 
						
							| 19 |  | sin01bnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴  −  ( ( 𝐴 ↑ 3 )  /  3 ) )  <  ( sin ‘ 𝐴 )  ∧  ( sin ‘ 𝐴 )  <  𝐴 ) ) | 
						
							| 20 | 19 | simprd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( sin ‘ 𝐴 )  <  𝐴 ) | 
						
							| 21 | 18 20 | sylbir | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( sin ‘ 𝐴 )  <  𝐴 ) | 
						
							| 22 |  | 1red | ⊢ ( 𝐴  ∈  ℝ+  →  1  ∈  ℝ ) | 
						
							| 23 | 10 21 22 1 | ltlecasei | ⊢ ( 𝐴  ∈  ℝ+  →  ( sin ‘ 𝐴 )  <  𝐴 ) |