Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
3 |
2
|
resincld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
4 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
5 |
|
sinbnd |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) ≤ 1 ) ) |
6 |
5
|
simprd |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ≤ 1 ) |
7 |
1 6
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( sin ‘ 𝐴 ) ≤ 1 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → ( sin ‘ 𝐴 ) ≤ 1 ) |
9 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
10 |
3 4 2 8 9
|
lelttrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → ( sin ‘ 𝐴 ) < 𝐴 ) |
11 |
|
df-3an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ↔ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝐴 ≤ 1 ) ) |
12 |
|
0xr |
⊢ 0 ∈ ℝ* |
13 |
|
1re |
⊢ 1 ∈ ℝ |
14 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
15 |
12 13 14
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
16 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
17 |
16
|
anbi1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ↔ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝐴 ≤ 1 ) ) |
18 |
11 15 17
|
3bitr4i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ) |
19 |
|
sin01bnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) |
20 |
19
|
simprd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) < 𝐴 ) |
21 |
18 20
|
sylbir |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sin ‘ 𝐴 ) < 𝐴 ) |
22 |
|
1red |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) |
23 |
10 21 22 1
|
ltlecasei |
⊢ ( 𝐴 ∈ ℝ+ → ( sin ‘ 𝐴 ) < 𝐴 ) |