| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 2 |  | sinsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  π  ∈  ℂ )  →  ( sin ‘ ( 𝐴  −  π ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ π ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ π ) ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  −  π ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ π ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ π ) ) ) ) | 
						
							| 4 |  | cospi | ⊢ ( cos ‘ π )  =  - 1 | 
						
							| 5 | 4 | oveq2i | ⊢ ( ( sin ‘ 𝐴 )  ·  ( cos ‘ π ) )  =  ( ( sin ‘ 𝐴 )  ·  - 1 ) | 
						
							| 6 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 |  | mulcom | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  - 1  ∈  ℂ )  →  ( ( sin ‘ 𝐴 )  ·  - 1 )  =  ( - 1  ·  ( sin ‘ 𝐴 ) ) ) | 
						
							| 9 | 7 8 | mpan2 | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  - 1 )  =  ( - 1  ·  ( sin ‘ 𝐴 ) ) ) | 
						
							| 10 |  | mulm1 | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℂ  →  ( - 1  ·  ( sin ‘ 𝐴 ) )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 11 | 9 10 | eqtrd | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  - 1 )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  - 1 )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 13 | 5 12 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ π ) )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 14 |  | sinpi | ⊢ ( sin ‘ π )  =  0 | 
						
							| 15 | 14 | oveq2i | ⊢ ( ( cos ‘ 𝐴 )  ·  ( sin ‘ π ) )  =  ( ( cos ‘ 𝐴 )  ·  0 ) | 
						
							| 16 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 17 | 16 | mul01d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  ·  0 )  =  0 ) | 
						
							| 18 | 15 17 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ π ) )  =  0 ) | 
						
							| 19 | 13 18 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ π ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ π ) ) )  =  ( - ( sin ‘ 𝐴 )  −  0 ) ) | 
						
							| 20 | 6 | negcld | ⊢ ( 𝐴  ∈  ℂ  →  - ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 21 | 20 | subid1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( sin ‘ 𝐴 )  −  0 )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ π ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ π ) ) )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 23 | 3 22 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  −  π ) )  =  - ( sin ‘ 𝐴 ) ) |