Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
pire |
⊢ π ∈ ℝ |
3 |
1 2
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
4 |
3
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ∈ ℝ ) |
5 |
|
rexr |
⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) |
6 |
|
rexr |
⊢ ( π ∈ ℝ → π ∈ ℝ* ) |
7 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) ) ) |
9 |
1 2 8
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) ) |
10 |
|
sinq12gt0 |
⊢ ( 𝐴 ∈ ( 0 (,) π ) → 0 < ( sin ‘ 𝐴 ) ) |
11 |
9 10
|
sylbir |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) → 0 < ( sin ‘ 𝐴 ) ) |
12 |
11
|
3expib |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∧ 𝐴 < π ) → 0 < ( sin ‘ 𝐴 ) ) ) |
13 |
4 12
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( 0 < 𝐴 ∧ 𝐴 < π ) → 0 < ( sin ‘ 𝐴 ) ) ) |
14 |
4
|
resincld |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
15 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( sin ‘ 𝐴 ) → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
16 |
1 14 15
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 < ( sin ‘ 𝐴 ) → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
17 |
13 16
|
syld |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( 0 < 𝐴 ∧ 𝐴 < π ) → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
18 |
17
|
expd |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 < 𝐴 → ( 𝐴 < π → 0 ≤ ( sin ‘ 𝐴 ) ) ) ) |
19 |
|
0le0 |
⊢ 0 ≤ 0 |
20 |
|
sin0 |
⊢ ( sin ‘ 0 ) = 0 |
21 |
19 20
|
breqtrri |
⊢ 0 ≤ ( sin ‘ 0 ) |
22 |
|
fveq2 |
⊢ ( 0 = 𝐴 → ( sin ‘ 0 ) = ( sin ‘ 𝐴 ) ) |
23 |
21 22
|
breqtrid |
⊢ ( 0 = 𝐴 → 0 ≤ ( sin ‘ 𝐴 ) ) |
24 |
23
|
a1i13 |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 = 𝐴 → ( 𝐴 < π → 0 ≤ ( sin ‘ 𝐴 ) ) ) ) |
25 |
3
|
simp2bi |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → 0 ≤ 𝐴 ) |
26 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
27 |
1 4 26
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
28 |
25 27
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
29 |
18 24 28
|
mpjaod |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 < π → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
30 |
|
sinpi |
⊢ ( sin ‘ π ) = 0 |
31 |
19 30
|
breqtrri |
⊢ 0 ≤ ( sin ‘ π ) |
32 |
|
fveq2 |
⊢ ( 𝐴 = π → ( sin ‘ 𝐴 ) = ( sin ‘ π ) ) |
33 |
31 32
|
breqtrrid |
⊢ ( 𝐴 = π → 0 ≤ ( sin ‘ 𝐴 ) ) |
34 |
33
|
a1i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 = π → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
35 |
3
|
simp3bi |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ≤ π ) |
36 |
|
leloe |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) ) |
37 |
4 2 36
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) ) |
38 |
35 37
|
mpbid |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 < π ∨ 𝐴 = π ) ) |
39 |
29 34 38
|
mpjaod |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ 𝐴 ) ) |