| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 3 | 1 2 | elicc2i | ⊢ ( 𝐴  ∈  ( 0 [,] π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  π ) ) | 
						
							| 4 | 3 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | rexr | ⊢ ( 0  ∈  ℝ  →  0  ∈  ℝ* ) | 
						
							| 6 |  | rexr | ⊢ ( π  ∈  ℝ  →  π  ∈  ℝ* ) | 
						
							| 7 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 (,) π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  π ) ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 0  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,) π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  π ) ) ) | 
						
							| 9 | 1 2 8 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,) π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  π ) ) | 
						
							| 10 |  | sinq12gt0 | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  0  <  ( sin ‘ 𝐴 ) ) | 
						
							| 11 | 9 10 | sylbir | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  π )  →  0  <  ( sin ‘ 𝐴 ) ) | 
						
							| 12 | 11 | 3expib | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  𝐴  ∧  𝐴  <  π )  →  0  <  ( sin ‘ 𝐴 ) ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( ( 0  <  𝐴  ∧  𝐴  <  π )  →  0  <  ( sin ‘ 𝐴 ) ) ) | 
						
							| 14 | 4 | resincld | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 15 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ∈  ℝ )  →  ( 0  <  ( sin ‘ 𝐴 )  →  0  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 16 | 1 14 15 | sylancr | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 0  <  ( sin ‘ 𝐴 )  →  0  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 17 | 13 16 | syld | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( ( 0  <  𝐴  ∧  𝐴  <  π )  →  0  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 18 | 17 | expd | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 0  <  𝐴  →  ( 𝐴  <  π  →  0  ≤  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 19 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 20 |  | sin0 | ⊢ ( sin ‘ 0 )  =  0 | 
						
							| 21 | 19 20 | breqtrri | ⊢ 0  ≤  ( sin ‘ 0 ) | 
						
							| 22 |  | fveq2 | ⊢ ( 0  =  𝐴  →  ( sin ‘ 0 )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 23 | 21 22 | breqtrid | ⊢ ( 0  =  𝐴  →  0  ≤  ( sin ‘ 𝐴 ) ) | 
						
							| 24 | 23 | a1i13 | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 0  =  𝐴  →  ( 𝐴  <  π  →  0  ≤  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 3 | simp2bi | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  0  ≤  𝐴 ) | 
						
							| 26 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 27 | 1 4 26 | sylancr | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 28 | 25 27 | mpbid | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) | 
						
							| 29 | 18 24 28 | mpjaod | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 𝐴  <  π  →  0  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 30 |  | sinpi | ⊢ ( sin ‘ π )  =  0 | 
						
							| 31 | 19 30 | breqtrri | ⊢ 0  ≤  ( sin ‘ π ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝐴  =  π  →  ( sin ‘ 𝐴 )  =  ( sin ‘ π ) ) | 
						
							| 33 | 31 32 | breqtrrid | ⊢ ( 𝐴  =  π  →  0  ≤  ( sin ‘ 𝐴 ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 𝐴  =  π  →  0  ≤  ( sin ‘ 𝐴 ) ) ) | 
						
							| 35 | 3 | simp3bi | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  𝐴  ≤  π ) | 
						
							| 36 |  | leloe | ⊢ ( ( 𝐴  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( 𝐴  ≤  π  ↔  ( 𝐴  <  π  ∨  𝐴  =  π ) ) ) | 
						
							| 37 | 4 2 36 | sylancl | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 𝐴  ≤  π  ↔  ( 𝐴  <  π  ∨  𝐴  =  π ) ) ) | 
						
							| 38 | 35 37 | mpbid | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  ( 𝐴  <  π  ∨  𝐴  =  π ) ) | 
						
							| 39 | 29 34 38 | mpjaod | ⊢ ( 𝐴  ∈  ( 0 [,] π )  →  0  ≤  ( sin ‘ 𝐴 ) ) |