| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 3 | 2 | addlidi | ⊢ ( 0  +  π )  =  π | 
						
							| 4 | 3 | eqcomi | ⊢ π  =  ( 0  +  π ) | 
						
							| 5 | 2 | 2timesi | ⊢ ( 2  ·  π )  =  ( π  +  π ) | 
						
							| 6 | 4 5 | oveq12i | ⊢ ( π (,) ( 2  ·  π ) )  =  ( ( 0  +  π ) (,) ( π  +  π ) ) | 
						
							| 7 | 6 | eleq2i | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  ↔  𝐴  ∈  ( ( 0  +  π ) (,) ( π  +  π ) ) ) | 
						
							| 8 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 9 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 10 |  | iooshf | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  π  ∈  ℝ )  ∧  ( 0  ∈  ℝ  ∧  π  ∈  ℝ ) )  →  ( ( 𝐴  −  π )  ∈  ( 0 (,) π )  ↔  𝐴  ∈  ( ( 0  +  π ) (,) ( π  +  π ) ) ) ) | 
						
							| 11 | 9 8 10 | mpanr12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( 𝐴  −  π )  ∈  ( 0 (,) π )  ↔  𝐴  ∈  ( ( 0  +  π ) (,) ( π  +  π ) ) ) ) | 
						
							| 12 | 8 11 | mpan2 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴  −  π )  ∈  ( 0 (,) π )  ↔  𝐴  ∈  ( ( 0  +  π ) (,) ( π  +  π ) ) ) ) | 
						
							| 13 | 7 12 | bitr4id | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  ↔  ( 𝐴  −  π )  ∈  ( 0 (,) π ) ) ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  ↔  ( 𝐴  −  π )  ∈  ( 0 (,) π ) ) ) | 
						
							| 15 | 14 | ibi | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  ( 𝐴  −  π )  ∈  ( 0 (,) π ) ) | 
						
							| 16 |  | sinq12gt0 | ⊢ ( ( 𝐴  −  π )  ∈  ( 0 (,) π )  →  0  <  ( sin ‘ ( 𝐴  −  π ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  0  <  ( sin ‘ ( 𝐴  −  π ) ) ) | 
						
							| 18 | 1 | recnd | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  𝐴  ∈  ℂ ) | 
						
							| 19 |  | sinmpi | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  −  π ) )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  ( sin ‘ ( 𝐴  −  π ) )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 21 | 17 20 | breqtrd | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  0  <  - ( sin ‘ 𝐴 ) ) | 
						
							| 22 | 1 | resincld | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 23 | 22 | lt0neg1d | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  ( ( sin ‘ 𝐴 )  <  0  ↔  0  <  - ( sin ‘ 𝐴 ) ) ) | 
						
							| 24 | 21 23 | mpbird | ⊢ ( 𝐴  ∈  ( π (,) ( 2  ·  π ) )  →  ( sin ‘ 𝐴 )  <  0 ) |