| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcl | ⊢ ( 𝐵  ∈  ℂ  →  - 𝐵  ∈  ℂ ) | 
						
							| 2 |  | sinadd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐵  ∈  ℂ )  →  ( sin ‘ ( 𝐴  +  - 𝐵 ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ - 𝐵 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ - 𝐵 ) ) ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( sin ‘ ( 𝐴  +  - 𝐵 ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ - 𝐵 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ - 𝐵 ) ) ) ) | 
						
							| 4 |  | negsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  - 𝐵 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( sin ‘ ( 𝐴  +  - 𝐵 ) )  =  ( sin ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 6 |  | cosneg | ⊢ ( 𝐵  ∈  ℂ  →  ( cos ‘ - 𝐵 )  =  ( cos ‘ 𝐵 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( cos ‘ - 𝐵 )  =  ( cos ‘ 𝐵 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ - 𝐵 ) )  =  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) ) ) | 
						
							| 9 |  | sinneg | ⊢ ( 𝐵  ∈  ℂ  →  ( sin ‘ - 𝐵 )  =  - ( sin ‘ 𝐵 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( sin ‘ - 𝐵 )  =  - ( sin ‘ 𝐵 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ - 𝐵 ) )  =  ( ( cos ‘ 𝐴 )  ·  - ( sin ‘ 𝐵 ) ) ) | 
						
							| 12 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 13 |  | sincl | ⊢ ( 𝐵  ∈  ℂ  →  ( sin ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 14 |  | mulneg2 | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐵 )  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  ·  - ( sin ‘ 𝐵 ) )  =  - ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) | 
						
							| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  ·  - ( sin ‘ 𝐵 ) )  =  - ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) | 
						
							| 16 | 11 15 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ - 𝐵 ) )  =  - ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) | 
						
							| 17 | 8 16 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ - 𝐵 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ - 𝐵 ) ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  +  - ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) ) | 
						
							| 18 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 19 |  | coscl | ⊢ ( 𝐵  ∈  ℂ  →  ( cos ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 20 |  | mulcl | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( cos ‘ 𝐵 )  ∈  ℂ )  →  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 22 |  | mulcl | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐵 )  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 23 | 12 13 22 | syl2an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 24 | 21 23 | negsubd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  +  - ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) ) | 
						
							| 25 | 17 24 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ - 𝐵 ) )  +  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ - 𝐵 ) ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) ) | 
						
							| 26 | 3 5 25 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( sin ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ( sin ‘ 𝐴 )  ·  ( cos ‘ 𝐵 ) )  −  ( ( cos ‘ 𝐴 )  ·  ( sin ‘ 𝐵 ) ) ) ) |