| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
| 2 |
|
sinadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) ) |
| 4 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + - 𝐵 ) ) = ( sin ‘ ( 𝐴 − 𝐵 ) ) ) |
| 6 |
|
cosneg |
⊢ ( 𝐵 ∈ ℂ → ( cos ‘ - 𝐵 ) = ( cos ‘ 𝐵 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ - 𝐵 ) = ( cos ‘ 𝐵 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) = ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) |
| 9 |
|
sinneg |
⊢ ( 𝐵 ∈ ℂ → ( sin ‘ - 𝐵 ) = - ( sin ‘ 𝐵 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ - 𝐵 ) = - ( sin ‘ 𝐵 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) = ( ( cos ‘ 𝐴 ) · - ( sin ‘ 𝐵 ) ) ) |
| 12 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 13 |
|
sincl |
⊢ ( 𝐵 ∈ ℂ → ( sin ‘ 𝐵 ) ∈ ℂ ) |
| 14 |
|
mulneg2 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · - ( sin ‘ 𝐵 ) ) = - ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 15 |
12 13 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · - ( sin ‘ 𝐵 ) ) = - ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 16 |
11 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) = - ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 17 |
8 16
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( sin ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + - ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 18 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 19 |
|
coscl |
⊢ ( 𝐵 ∈ ℂ → ( cos ‘ 𝐵 ) ∈ ℂ ) |
| 20 |
|
mulcl |
⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐵 ) ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 21 |
18 19 20
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 22 |
|
mulcl |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 23 |
12 13 22
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 |
21 23
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + - ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 25 |
17 24
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( sin ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 26 |
3 5 25
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 − 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |