Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝐴 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( - i · 𝑥 ) = ( - i · 𝐴 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( exp ‘ ( - i · 𝑥 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
5 |
2 4
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
7 |
|
df-sin |
⊢ sin = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) |
8 |
|
ovex |
⊢ ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ∈ V |
9 |
6 7 8
|
fvmpt |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |