| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fusgrmaxsize.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgrmaxsize.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | usgrsscusgra.h | ⊢ 𝑉  =  ( Vtx ‘ 𝐻 ) | 
						
							| 4 |  | usgrsscusgra.f | ⊢ 𝐹  =  ( Edg ‘ 𝐻 ) | 
						
							| 5 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 6 |  | resiexg | ⊢ ( 𝐸  ∈  V  →  (  I   ↾  𝐸 )  ∈  V ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  (  I   ↾  𝐸 )  ∈  V ) | 
						
							| 8 | 1 2 3 4 | sizusglecusglem1 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐹 ) | 
						
							| 9 |  | f1eq1 | ⊢ ( 𝑓  =  (  I   ↾  𝐸 )  →  ( 𝑓 : 𝐸 –1-1→ 𝐹  ↔  (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐹 ) ) | 
						
							| 10 | 7 8 9 | spcedv | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  ∧  ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph ) )  →  ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) | 
						
							| 12 |  | hashdom | ⊢ ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  →  ( ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 )  ↔  𝐸  ≼  𝐹 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  ∧  ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph ) )  →  ( ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 )  ↔  𝐸  ≼  𝐹 ) ) | 
						
							| 14 |  | brdomg | ⊢ ( 𝐹  ∈  Fin  →  ( 𝐸  ≼  𝐹  ↔  ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  →  ( 𝐸  ≼  𝐹  ↔  ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  ∧  ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph ) )  →  ( 𝐸  ≼  𝐹  ↔  ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) | 
						
							| 17 | 13 16 | bitrd | ⊢ ( ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  ∧  ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph ) )  →  ( ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 )  ↔  ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) | 
						
							| 18 | 11 17 | mpbird | ⊢ ( ( ( 𝐸  ∈  Fin  ∧  𝐹  ∈  Fin )  ∧  ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph ) )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) | 
						
							| 19 | 18 | exp31 | ⊢ ( 𝐸  ∈  Fin  →  ( 𝐹  ∈  Fin  →  ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 20 | 1 2 3 4 | sizusglecusglem2 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph  ∧  𝐹  ∈  Fin )  →  𝐸  ∈  Fin ) | 
						
							| 21 | 20 | pm2.24d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph  ∧  𝐹  ∈  Fin )  →  ( ¬  𝐸  ∈  Fin  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 22 | 21 | 3expia | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ( 𝐹  ∈  Fin  →  ( ¬  𝐸  ∈  Fin  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 23 | 22 | com13 | ⊢ ( ¬  𝐸  ∈  Fin  →  ( 𝐹  ∈  Fin  →  ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 24 | 19 23 | pm2.61i | ⊢ ( 𝐹  ∈  Fin  →  ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 25 | 4 | fvexi | ⊢ 𝐹  ∈  V | 
						
							| 26 |  | nfile | ⊢ ( ( 𝐸  ∈  V  ∧  𝐹  ∈  V  ∧  ¬  𝐹  ∈  Fin )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) | 
						
							| 27 | 5 25 26 | mp3an12 | ⊢ ( ¬  𝐹  ∈  Fin  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) | 
						
							| 28 | 27 | a1d | ⊢ ( ¬  𝐹  ∈  Fin  →  ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 29 | 24 28 | pm2.61i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐻  ∈  ComplUSGraph )  →  ( ♯ ‘ 𝐸 )  ≤  ( ♯ ‘ 𝐹 ) ) |