Step |
Hyp |
Ref |
Expression |
1 |
|
fusgrmaxsize.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgrmaxsize.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
usgrsscusgra.h |
⊢ 𝑉 = ( Vtx ‘ 𝐻 ) |
4 |
|
usgrsscusgra.f |
⊢ 𝐹 = ( Edg ‘ 𝐻 ) |
5 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
6 |
|
resiexg |
⊢ ( 𝐸 ∈ V → ( I ↾ 𝐸 ) ∈ V ) |
7 |
5 6
|
mp1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( I ↾ 𝐸 ) ∈ V ) |
8 |
1 2 3 4
|
sizusglecusglem1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐹 ) |
9 |
|
f1eq1 |
⊢ ( 𝑓 = ( I ↾ 𝐸 ) → ( 𝑓 : 𝐸 –1-1→ 𝐹 ↔ ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐹 ) ) |
10 |
7 8 9
|
spcedv |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) ∧ ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) ) → ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) |
12 |
|
hashdom |
⊢ ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) → ( ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ↔ 𝐸 ≼ 𝐹 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) ∧ ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) ) → ( ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ↔ 𝐸 ≼ 𝐹 ) ) |
14 |
|
brdomg |
⊢ ( 𝐹 ∈ Fin → ( 𝐸 ≼ 𝐹 ↔ ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) → ( 𝐸 ≼ 𝐹 ↔ ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) ∧ ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) ) → ( 𝐸 ≼ 𝐹 ↔ ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) |
17 |
13 16
|
bitrd |
⊢ ( ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) ∧ ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) ) → ( ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ↔ ∃ 𝑓 𝑓 : 𝐸 –1-1→ 𝐹 ) ) |
18 |
11 17
|
mpbird |
⊢ ( ( ( 𝐸 ∈ Fin ∧ 𝐹 ∈ Fin ) ∧ ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) |
19 |
18
|
exp31 |
⊢ ( 𝐸 ∈ Fin → ( 𝐹 ∈ Fin → ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) ) ) |
20 |
1 2 3 4
|
sizusglecusglem2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin ) → 𝐸 ∈ Fin ) |
21 |
20
|
pm2.24d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin ) → ( ¬ 𝐸 ∈ Fin → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
22 |
21
|
3expia |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( 𝐹 ∈ Fin → ( ¬ 𝐸 ∈ Fin → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) ) ) |
23 |
22
|
com13 |
⊢ ( ¬ 𝐸 ∈ Fin → ( 𝐹 ∈ Fin → ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) ) ) |
24 |
19 23
|
pm2.61i |
⊢ ( 𝐹 ∈ Fin → ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
25 |
4
|
fvexi |
⊢ 𝐹 ∈ V |
26 |
|
nfile |
⊢ ( ( 𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ¬ 𝐹 ∈ Fin ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) |
27 |
5 25 26
|
mp3an12 |
⊢ ( ¬ 𝐹 ∈ Fin → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) |
28 |
27
|
a1d |
⊢ ( ¬ 𝐹 ∈ Fin → ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
29 |
24 28
|
pm2.61i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( ♯ ‘ 𝐸 ) ≤ ( ♯ ‘ 𝐹 ) ) |