Metamath Proof Explorer


Theorem sizusglecusglem1

Description: Lemma 1 for sizusglecusg . (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v 𝑉 = ( Vtx ‘ 𝐺 )
fusgrmaxsize.e 𝐸 = ( Edg ‘ 𝐺 )
usgrsscusgra.h 𝑉 = ( Vtx ‘ 𝐻 )
usgrsscusgra.f 𝐹 = ( Edg ‘ 𝐻 )
Assertion sizusglecusglem1 ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( I ↾ 𝐸 ) : 𝐸1-1𝐹 )

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fusgrmaxsize.e 𝐸 = ( Edg ‘ 𝐺 )
3 usgrsscusgra.h 𝑉 = ( Vtx ‘ 𝐻 )
4 usgrsscusgra.f 𝐹 = ( Edg ‘ 𝐻 )
5 f1oi ( I ↾ 𝐸 ) : 𝐸1-1-onto𝐸
6 f1of1 ( ( I ↾ 𝐸 ) : 𝐸1-1-onto𝐸 → ( I ↾ 𝐸 ) : 𝐸1-1𝐸 )
7 5 6 ax-mp ( I ↾ 𝐸 ) : 𝐸1-1𝐸
8 1 2 3 4 usgredgsscusgredg ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → 𝐸𝐹 )
9 f1ss ( ( ( I ↾ 𝐸 ) : 𝐸1-1𝐸𝐸𝐹 ) → ( I ↾ 𝐸 ) : 𝐸1-1𝐹 )
10 7 8 9 sylancr ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ) → ( I ↾ 𝐸 ) : 𝐸1-1𝐹 )