Step |
Hyp |
Ref |
Expression |
1 |
|
fusgrmaxsize.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgrmaxsize.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
usgrsscusgra.h |
⊢ 𝑉 = ( Vtx ‘ 𝐻 ) |
4 |
|
usgrsscusgra.f |
⊢ 𝐹 = ( Edg ‘ 𝐻 ) |
5 |
3 4
|
cusgrfi |
⊢ ( ( 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin ) → 𝑉 ∈ Fin ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin ) → 𝑉 ∈ Fin ) |
7 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
8 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
9 |
7 8
|
sylbir |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
10 |
2 9
|
eqeltrid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) → 𝐸 ∈ Fin ) |
11 |
10
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( 𝑉 ∈ Fin → 𝐸 ∈ Fin ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin ) → ( 𝑉 ∈ Fin → 𝐸 ∈ Fin ) ) |
13 |
6 12
|
mpd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph ∧ 𝐹 ∈ Fin ) → 𝐸 ∈ Fin ) |