| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑧 ) = ( 𝑥𝑂 +s 𝑧 ) ) |
| 2 |
1
|
breq2d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) ↔ ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) ) ) |
| 3 |
|
breq2 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑦 <s 𝑥 ↔ 𝑦 <s 𝑥𝑂 ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ↔ ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧 ) ) |
| 6 |
5
|
breq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) ↔ ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) ) ) |
| 7 |
|
breq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 <s 𝑥𝑂 ↔ 𝑦𝑂 <s 𝑥𝑂 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ↔ ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 +s 𝑧 ) = ( 𝑥𝑂 +s 𝑧𝑂 ) ) |
| 11 |
9 10
|
breq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) ↔ ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) ) ) |
| 12 |
11
|
imbi1d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ↔ ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑧𝑂 ) = ( 𝑥𝑂 +s 𝑧𝑂 ) ) |
| 14 |
13
|
breq2d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) ↔ ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) ) ) |
| 15 |
|
breq2 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑦𝑂 <s 𝑥 ↔ 𝑦𝑂 <s 𝑥𝑂 ) ) |
| 16 |
14 15
|
imbi12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ↔ ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
| 18 |
17
|
breq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) ↔ ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) ) ) |
| 19 |
|
breq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 <s 𝑥 ↔ 𝑦𝑂 <s 𝑥 ) ) |
| 20 |
18 19
|
imbi12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ↔ ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ) ) |
| 21 |
17
|
breq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) ↔ ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) ) ) |
| 22 |
21 7
|
imbi12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ↔ ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥 +s 𝑧 ) = ( 𝑥 +s 𝑧𝑂 ) ) |
| 24 |
9 23
|
breq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) ↔ ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) ) ) |
| 25 |
24
|
imbi1d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ↔ ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s 𝑧 ) = ( 𝐴 +s 𝑧 ) ) |
| 27 |
26
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) ↔ ( 𝑦 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) ) ) |
| 28 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 <s 𝑥 ↔ 𝑦 <s 𝐴 ) ) |
| 29 |
27 28
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ↔ ( ( 𝑦 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) → 𝑦 <s 𝐴 ) ) ) |
| 30 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝑧 ) = ( 𝐵 +s 𝑧 ) ) |
| 31 |
30
|
breq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) ↔ ( 𝐵 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) ) ) |
| 32 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 <s 𝐴 ↔ 𝐵 <s 𝐴 ) ) |
| 33 |
31 32
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑦 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) → 𝑦 <s 𝐴 ) ↔ ( ( 𝐵 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) → 𝐵 <s 𝐴 ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 +s 𝑧 ) = ( 𝐵 +s 𝐶 ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 +s 𝑧 ) = ( 𝐴 +s 𝐶 ) ) |
| 36 |
34 35
|
breq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐵 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) ↔ ( 𝐵 +s 𝐶 ) <s ( 𝐴 +s 𝐶 ) ) ) |
| 37 |
36
|
imbi1d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐵 +s 𝑧 ) <s ( 𝐴 +s 𝑧 ) → 𝐵 <s 𝐴 ) ↔ ( ( 𝐵 +s 𝐶 ) <s ( 𝐴 +s 𝐶 ) → 𝐵 <s 𝐴 ) ) ) |
| 38 |
|
simp2 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → 𝑦 ∈ No ) |
| 39 |
|
simp3 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → 𝑧 ∈ No ) |
| 40 |
38 39
|
addscut |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑦 +s 𝑧 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s { ( 𝑦 +s 𝑧 ) } ∧ { ( 𝑦 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) ) |
| 41 |
|
simp2 |
⊢ ( ( ( 𝑦 +s 𝑧 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s { ( 𝑦 +s 𝑧 ) } ∧ { ( 𝑦 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) → ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s { ( 𝑦 +s 𝑧 ) } ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s { ( 𝑦 +s 𝑧 ) } ) |
| 43 |
40
|
simp3d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → { ( 𝑦 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) |
| 44 |
|
ovex |
⊢ ( 𝑦 +s 𝑧 ) ∈ V |
| 45 |
44
|
snnz |
⊢ { ( 𝑦 +s 𝑧 ) } ≠ ∅ |
| 46 |
|
sslttr |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s { ( 𝑦 +s 𝑧 ) } ∧ { ( 𝑦 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ∧ { ( 𝑦 +s 𝑧 ) } ≠ ∅ ) → ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) |
| 47 |
45 46
|
mp3an3 |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s { ( 𝑦 +s 𝑧 ) } ∧ { ( 𝑦 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) → ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) |
| 48 |
42 43 47
|
syl2anc |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) |
| 49 |
|
simp1 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → 𝑥 ∈ No ) |
| 50 |
49 39
|
addscut |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑥 +s 𝑧 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s { ( 𝑥 +s 𝑧 ) } ∧ { ( 𝑥 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) ) |
| 51 |
|
simp2 |
⊢ ( ( ( 𝑥 +s 𝑧 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s { ( 𝑥 +s 𝑧 ) } ∧ { ( 𝑥 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s { ( 𝑥 +s 𝑧 ) } ) |
| 52 |
50 51
|
syl |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s { ( 𝑥 +s 𝑧 ) } ) |
| 53 |
50
|
simp3d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → { ( 𝑥 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) |
| 54 |
|
ovex |
⊢ ( 𝑥 +s 𝑧 ) ∈ V |
| 55 |
54
|
snnz |
⊢ { ( 𝑥 +s 𝑧 ) } ≠ ∅ |
| 56 |
|
sslttr |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s { ( 𝑥 +s 𝑧 ) } ∧ { ( 𝑥 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ∧ { ( 𝑥 +s 𝑧 ) } ≠ ∅ ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) |
| 57 |
55 56
|
mp3an3 |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s { ( 𝑥 +s 𝑧 ) } ∧ { ( 𝑥 +s 𝑧 ) } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) |
| 58 |
52 53 57
|
syl2anc |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) |
| 59 |
|
addsval2 |
⊢ ( ( 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑦 +s 𝑧 ) = ( ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) |s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) ) |
| 60 |
59
|
3adant1 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑦 +s 𝑧 ) = ( ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) |s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) ) |
| 61 |
|
addsval2 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑥 +s 𝑧 ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) ) |
| 62 |
61
|
3adant2 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑥 +s 𝑧 ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) ) |
| 63 |
|
sltrec |
⊢ ( ( ( ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ∧ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) ∧ ( ( 𝑦 +s 𝑧 ) = ( ( { 𝑎 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑎 = ( 𝑦𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑦 +s 𝑧𝐿 ) } ) |s ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) ) ∧ ( 𝑥 +s 𝑧 ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑥 +s 𝑧𝑅 ) } ) ) ) ) → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) ↔ ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 ∨ ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) ) |
| 64 |
48 58 60 62 63
|
syl22anc |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) ↔ ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 ∨ ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) ↔ ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 ∨ ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) ) |
| 66 |
|
rexun |
⊢ ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ( ∃ 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ∨ ∃ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 67 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑝 → ( 𝑎 = ( 𝑥𝐿 +s 𝑧 ) ↔ 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ) ) |
| 68 |
67
|
rexbidv |
⊢ ( 𝑎 = 𝑝 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ) ) |
| 69 |
68
|
rexab |
⊢ ( ∃ 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ∃ 𝑝 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 70 |
|
rexcom4 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑝 ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑝 ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 71 |
|
r19.41v |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 72 |
71
|
exbii |
⊢ ( ∃ 𝑝 ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑝 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 73 |
70 72
|
bitri |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑝 ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑝 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 74 |
|
ovex |
⊢ ( 𝑥𝐿 +s 𝑧 ) ∈ V |
| 75 |
|
breq2 |
⊢ ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) → ( ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) |
| 76 |
74 75
|
ceqsexv |
⊢ ( ∃ 𝑝 ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) |
| 77 |
76
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑝 ( 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) |
| 78 |
73 77
|
bitr3i |
⊢ ( ∃ 𝑝 ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) |
| 79 |
69 78
|
bitri |
⊢ ( ∃ 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) |
| 80 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑝 → ( 𝑏 = ( 𝑥 +s 𝑧𝐿 ) ↔ 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ) ) |
| 81 |
80
|
rexbidv |
⊢ ( 𝑏 = 𝑝 → ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ) ) |
| 82 |
81
|
rexab |
⊢ ( ∃ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ∃ 𝑝 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 83 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∃ 𝑝 ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑝 ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 84 |
|
r19.41v |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 85 |
84
|
exbii |
⊢ ( ∃ 𝑝 ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑝 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 86 |
83 85
|
bitri |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∃ 𝑝 ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑝 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ) |
| 87 |
|
ovex |
⊢ ( 𝑥 +s 𝑧𝐿 ) ∈ V |
| 88 |
|
breq2 |
⊢ ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) → ( ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) |
| 89 |
87 88
|
ceqsexv |
⊢ ( ∃ 𝑝 ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) |
| 90 |
89
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∃ 𝑝 ( 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) |
| 91 |
86 90
|
bitr3i |
⊢ ( ∃ 𝑝 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑝 = ( 𝑥 +s 𝑧𝐿 ) ∧ ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) |
| 92 |
82 91
|
bitri |
⊢ ( ∃ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) |
| 93 |
79 92
|
orbi12i |
⊢ ( ( ∃ 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ∨ ∃ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ( 𝑦 +s 𝑧 ) ≤s 𝑝 ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) |
| 94 |
66 93
|
bitri |
⊢ ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) |
| 95 |
|
simpll2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑦 ∈ No ) |
| 96 |
|
leftssno |
⊢ ( L ‘ 𝑥 ) ⊆ No |
| 97 |
96
|
sseli |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ No ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) → 𝑥𝐿 ∈ No ) |
| 99 |
98
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑥𝐿 ∈ No ) |
| 100 |
|
simpll1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑥 ∈ No ) |
| 101 |
|
simprr |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) |
| 102 |
|
simpll3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑧 ∈ No ) |
| 103 |
|
sleadd1im |
⊢ ( ( 𝑦 ∈ No ∧ 𝑥𝐿 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) → 𝑦 ≤s 𝑥𝐿 ) ) |
| 104 |
95 99 102 103
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → ( ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) → 𝑦 ≤s 𝑥𝐿 ) ) |
| 105 |
101 104
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑦 ≤s 𝑥𝐿 ) |
| 106 |
|
leftval |
⊢ ( L ‘ 𝑥 ) = { 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∣ 𝑥𝐿 <s 𝑥 } |
| 107 |
106
|
reqabi |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ↔ ( 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∧ 𝑥𝐿 <s 𝑥 ) ) |
| 108 |
107
|
simprbi |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 <s 𝑥 ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) → 𝑥𝐿 <s 𝑥 ) |
| 110 |
109
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑥𝐿 <s 𝑥 ) |
| 111 |
95 99 100 105 110
|
slelttrd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ) ) → 𝑦 <s 𝑥 ) |
| 112 |
111
|
rexlimdvaa |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) → 𝑦 <s 𝑥 ) ) |
| 113 |
|
simpll2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑦 ∈ No ) |
| 114 |
|
leftssno |
⊢ ( L ‘ 𝑧 ) ⊆ No |
| 115 |
114
|
sseli |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) → 𝑧𝐿 ∈ No ) |
| 116 |
115
|
adantr |
⊢ ( ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) → 𝑧𝐿 ∈ No ) |
| 117 |
116
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑧𝐿 ∈ No ) |
| 118 |
113 117
|
addscld |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑦 +s 𝑧𝐿 ) ∈ No ) |
| 119 |
|
simpll3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑧 ∈ No ) |
| 120 |
113 119
|
addscld |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑦 +s 𝑧 ) ∈ No ) |
| 121 |
|
simpll1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑥 ∈ No ) |
| 122 |
121 117
|
addscld |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑥 +s 𝑧𝐿 ) ∈ No ) |
| 123 |
|
leftval |
⊢ ( L ‘ 𝑧 ) = { 𝑧𝐿 ∈ ( O ‘ ( bday ‘ 𝑧 ) ) ∣ 𝑧𝐿 <s 𝑧 } |
| 124 |
123
|
reqabi |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ↔ ( 𝑧𝐿 ∈ ( O ‘ ( bday ‘ 𝑧 ) ) ∧ 𝑧𝐿 <s 𝑧 ) ) |
| 125 |
124
|
simprbi |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) → 𝑧𝐿 <s 𝑧 ) |
| 126 |
125
|
adantr |
⊢ ( ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) → 𝑧𝐿 <s 𝑧 ) |
| 127 |
126
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑧𝐿 <s 𝑧 ) |
| 128 |
|
sltadd2im |
⊢ ( ( 𝑧𝐿 ∈ No ∧ 𝑧 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑧𝐿 <s 𝑧 → ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑦 +s 𝑧 ) ) ) |
| 129 |
117 119 113 128
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑧𝐿 <s 𝑧 → ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑦 +s 𝑧 ) ) ) |
| 130 |
127 129
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑦 +s 𝑧 ) ) |
| 131 |
|
simprr |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) |
| 132 |
118 120 122 130 131
|
sltletrd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑥 +s 𝑧𝐿 ) ) |
| 133 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦 +s 𝑧𝐿 ) ) |
| 134 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( 𝑥 +s 𝑧𝑂 ) = ( 𝑥 +s 𝑧𝐿 ) ) |
| 135 |
133 134
|
breq12d |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) ↔ ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑥 +s 𝑧𝐿 ) ) ) |
| 136 |
135
|
imbi1d |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ↔ ( ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑥 +s 𝑧𝐿 ) → 𝑦 <s 𝑥 ) ) ) |
| 137 |
|
simplr3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) |
| 138 |
|
simprl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) |
| 139 |
|
elun1 |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 140 |
138 139
|
syl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 141 |
136 137 140
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → ( ( 𝑦 +s 𝑧𝐿 ) <s ( 𝑥 +s 𝑧𝐿 ) → 𝑦 <s 𝑥 ) ) |
| 142 |
132 141
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) ) → 𝑦 <s 𝑥 ) |
| 143 |
142
|
rexlimdvaa |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) → 𝑦 <s 𝑥 ) ) |
| 144 |
112 143
|
jaod |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥𝐿 +s 𝑧 ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ( 𝑦 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧𝐿 ) ) → 𝑦 <s 𝑥 ) ) |
| 145 |
94 144
|
biimtrid |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 → 𝑦 <s 𝑥 ) ) |
| 146 |
|
rexun |
⊢ ( ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ( ∃ 𝑞 ∈ { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ∨ ∃ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 147 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑞 → ( 𝑐 = ( 𝑦𝑅 +s 𝑧 ) ↔ 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ) ) |
| 148 |
147
|
rexbidv |
⊢ ( 𝑐 = 𝑞 → ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ) ) |
| 149 |
148
|
rexab |
⊢ ( ∃ 𝑞 ∈ { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ∃ 𝑞 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 150 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑞 ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑞 ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 151 |
|
r19.41v |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 152 |
151
|
exbii |
⊢ ( ∃ 𝑞 ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑞 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 153 |
150 152
|
bitri |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑞 ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑞 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 154 |
|
ovex |
⊢ ( 𝑦𝑅 +s 𝑧 ) ∈ V |
| 155 |
|
breq1 |
⊢ ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) → ( 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 156 |
154 155
|
ceqsexv |
⊢ ( ∃ 𝑞 ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 157 |
156
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑞 ( 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 158 |
153 157
|
bitr3i |
⊢ ( ∃ 𝑞 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑞 = ( 𝑦𝑅 +s 𝑧 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 159 |
149 158
|
bitri |
⊢ ( ∃ 𝑞 ∈ { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 160 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑞 → ( 𝑑 = ( 𝑦 +s 𝑧𝑅 ) ↔ 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ) ) |
| 161 |
160
|
rexbidv |
⊢ ( 𝑑 = 𝑞 → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ) ) |
| 162 |
161
|
rexab |
⊢ ( ∃ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ∃ 𝑞 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 163 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑞 ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑞 ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 164 |
|
r19.41v |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 165 |
164
|
exbii |
⊢ ( ∃ 𝑞 ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑞 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 166 |
163 165
|
bitri |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑞 ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑞 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 167 |
|
ovex |
⊢ ( 𝑦 +s 𝑧𝑅 ) ∈ V |
| 168 |
|
breq1 |
⊢ ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) → ( 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 169 |
167 168
|
ceqsexv |
⊢ ( ∃ 𝑞 ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 170 |
169
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑞 ( 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 171 |
166 170
|
bitr3i |
⊢ ( ∃ 𝑞 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑞 = ( 𝑦 +s 𝑧𝑅 ) ∧ 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 172 |
162 171
|
bitri |
⊢ ( ∃ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 173 |
159 172
|
orbi12i |
⊢ ( ( ∃ 𝑞 ∈ { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ∨ ∃ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 174 |
146 173
|
bitri |
⊢ ( ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) |
| 175 |
|
simpll2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦 ∈ No ) |
| 176 |
|
rightssno |
⊢ ( R ‘ 𝑦 ) ⊆ No |
| 177 |
176
|
sseli |
⊢ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) → 𝑦𝑅 ∈ No ) |
| 178 |
177
|
adantr |
⊢ ( ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) → 𝑦𝑅 ∈ No ) |
| 179 |
178
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦𝑅 ∈ No ) |
| 180 |
|
simpll1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑥 ∈ No ) |
| 181 |
|
rightval |
⊢ ( R ‘ 𝑦 ) = { 𝑦𝑅 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ∣ 𝑦 <s 𝑦𝑅 } |
| 182 |
181
|
reqabi |
⊢ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ↔ ( 𝑦𝑅 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ∧ 𝑦 <s 𝑦𝑅 ) ) |
| 183 |
182
|
simprbi |
⊢ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) → 𝑦 <s 𝑦𝑅 ) |
| 184 |
183
|
adantr |
⊢ ( ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) → 𝑦 <s 𝑦𝑅 ) |
| 185 |
184
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦 <s 𝑦𝑅 ) |
| 186 |
|
simprr |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 187 |
|
simpll3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑧 ∈ No ) |
| 188 |
|
sleadd1im |
⊢ ( ( 𝑦𝑅 ∈ No ∧ 𝑥 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) → 𝑦𝑅 ≤s 𝑥 ) ) |
| 189 |
179 180 187 188
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) → 𝑦𝑅 ≤s 𝑥 ) ) |
| 190 |
186 189
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦𝑅 ≤s 𝑥 ) |
| 191 |
175 179 180 185 190
|
sltletrd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∧ ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦 <s 𝑥 ) |
| 192 |
191
|
rexlimdvaa |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ) |
| 193 |
|
simpll2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦 ∈ No ) |
| 194 |
|
rightssno |
⊢ ( R ‘ 𝑧 ) ⊆ No |
| 195 |
194
|
sseli |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) → 𝑧𝑅 ∈ No ) |
| 196 |
195
|
adantr |
⊢ ( ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) → 𝑧𝑅 ∈ No ) |
| 197 |
196
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑧𝑅 ∈ No ) |
| 198 |
193 197
|
addscld |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑦 +s 𝑧𝑅 ) ∈ No ) |
| 199 |
|
simpll1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑥 ∈ No ) |
| 200 |
|
simpll3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑧 ∈ No ) |
| 201 |
199 200
|
addscld |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑥 +s 𝑧 ) ∈ No ) |
| 202 |
199 197
|
addscld |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑥 +s 𝑧𝑅 ) ∈ No ) |
| 203 |
|
simprr |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) |
| 204 |
200 197 199
|
3jca |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑧 ∈ No ∧ 𝑧𝑅 ∈ No ∧ 𝑥 ∈ No ) ) |
| 205 |
|
rightval |
⊢ ( R ‘ 𝑧 ) = { 𝑧𝑅 ∈ ( O ‘ ( bday ‘ 𝑧 ) ) ∣ 𝑧 <s 𝑧𝑅 } |
| 206 |
205
|
reqabi |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ↔ ( 𝑧𝑅 ∈ ( O ‘ ( bday ‘ 𝑧 ) ) ∧ 𝑧 <s 𝑧𝑅 ) ) |
| 207 |
206
|
simprbi |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) → 𝑧 <s 𝑧𝑅 ) |
| 208 |
207
|
adantr |
⊢ ( ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) → 𝑧 <s 𝑧𝑅 ) |
| 209 |
208
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑧 <s 𝑧𝑅 ) |
| 210 |
|
sltadd2im |
⊢ ( ( 𝑧 ∈ No ∧ 𝑧𝑅 ∈ No ∧ 𝑥 ∈ No ) → ( 𝑧 <s 𝑧𝑅 → ( 𝑥 +s 𝑧 ) <s ( 𝑥 +s 𝑧𝑅 ) ) ) |
| 211 |
204 209 210
|
sylc |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑥 +s 𝑧 ) <s ( 𝑥 +s 𝑧𝑅 ) ) |
| 212 |
198 201 202 203 211
|
slelttrd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( 𝑦 +s 𝑧𝑅 ) <s ( 𝑥 +s 𝑧𝑅 ) ) |
| 213 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦 +s 𝑧𝑅 ) ) |
| 214 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( 𝑥 +s 𝑧𝑂 ) = ( 𝑥 +s 𝑧𝑅 ) ) |
| 215 |
213 214
|
breq12d |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) ↔ ( 𝑦 +s 𝑧𝑅 ) <s ( 𝑥 +s 𝑧𝑅 ) ) ) |
| 216 |
215
|
imbi1d |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ↔ ( ( 𝑦 +s 𝑧𝑅 ) <s ( 𝑥 +s 𝑧𝑅 ) → 𝑦 <s 𝑥 ) ) ) |
| 217 |
|
simplr3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) |
| 218 |
|
simprl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) |
| 219 |
|
elun2 |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 220 |
218 219
|
syl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
| 221 |
216 217 220
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → ( ( 𝑦 +s 𝑧𝑅 ) <s ( 𝑥 +s 𝑧𝑅 ) → 𝑦 <s 𝑥 ) ) |
| 222 |
212 221
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) ∧ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∧ ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) ) → 𝑦 <s 𝑥 ) |
| 223 |
222
|
rexlimdvaa |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ) |
| 224 |
192 223
|
jaod |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ( 𝑦𝑅 +s 𝑧 ) ≤s ( 𝑥 +s 𝑧 ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ( 𝑦 +s 𝑧𝑅 ) ≤s ( 𝑥 +s 𝑧 ) ) → 𝑦 <s 𝑥 ) ) |
| 225 |
174 224
|
biimtrid |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ) |
| 226 |
145 225
|
jaod |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ( ∃ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑏 = ( 𝑥 +s 𝑧𝐿 ) } ) ( 𝑦 +s 𝑧 ) ≤s 𝑝 ∨ ∃ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑐 = ( 𝑦𝑅 +s 𝑧 ) } ∪ { 𝑑 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑑 = ( 𝑦 +s 𝑧𝑅 ) } ) 𝑞 ≤s ( 𝑥 +s 𝑧 ) ) → 𝑦 <s 𝑥 ) ) |
| 227 |
65 226
|
sylbid |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) ) → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ) |
| 228 |
227
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦𝑂 <s 𝑥𝑂 ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥𝑂 +s 𝑧𝑂 ) → 𝑦 <s 𝑥𝑂 ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑦 +s 𝑧 ) <s ( 𝑥𝑂 +s 𝑧 ) → 𝑦 <s 𝑥𝑂 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦𝑂 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦𝑂 <s 𝑥 ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑦𝑂 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦𝑂 <s 𝑥 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑦 +s 𝑧𝑂 ) <s ( 𝑥 +s 𝑧𝑂 ) → 𝑦 <s 𝑥 ) ) → ( ( 𝑦 +s 𝑧 ) <s ( 𝑥 +s 𝑧 ) → 𝑦 <s 𝑥 ) ) ) |
| 229 |
4 8 12 16 20 22 25 29 33 37 228
|
no3inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐵 +s 𝐶 ) <s ( 𝐴 +s 𝐶 ) → 𝐵 <s 𝐴 ) ) |
| 230 |
|
addscl |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) ∈ No ) |
| 231 |
230
|
3adant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) ∈ No ) |
| 232 |
|
addscl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 +s 𝐶 ) ∈ No ) |
| 233 |
232
|
3adant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 +s 𝐶 ) ∈ No ) |
| 234 |
|
sltnle |
⊢ ( ( ( 𝐵 +s 𝐶 ) ∈ No ∧ ( 𝐴 +s 𝐶 ) ∈ No ) → ( ( 𝐵 +s 𝐶 ) <s ( 𝐴 +s 𝐶 ) ↔ ¬ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) ) |
| 235 |
231 233 234
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐵 +s 𝐶 ) <s ( 𝐴 +s 𝐶 ) ↔ ¬ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) ) |
| 236 |
|
sltnle |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵 ) ) |
| 237 |
236
|
ancoms |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵 ) ) |
| 238 |
237
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵 ) ) |
| 239 |
229 235 238
|
3imtr3d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ¬ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) → ¬ 𝐴 ≤s 𝐵 ) ) |
| 240 |
239
|
con4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ≤s 𝐵 → ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) ) |
| 241 |
|
sleadd1im |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) → 𝐴 ≤s 𝐵 ) ) |
| 242 |
240 241
|
impbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) ) |