Metamath Proof Explorer


Theorem sleadd2

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 +s 𝐴 ) ≤s ( 𝐶 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sleadd1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ) )
2 addscom ( ( 𝐴 No 𝐶 No ) → ( 𝐴 +s 𝐶 ) = ( 𝐶 +s 𝐴 ) )
3 2 3adant2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 +s 𝐶 ) = ( 𝐶 +s 𝐴 ) )
4 addscom ( ( 𝐵 No 𝐶 No ) → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
5 4 3adant1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
6 3 5 breq12d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) ≤s ( 𝐵 +s 𝐶 ) ↔ ( 𝐶 +s 𝐴 ) ≤s ( 𝐶 +s 𝐵 ) ) )
7 1 6 bitrd ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 +s 𝐴 ) ≤s ( 𝐶 +s 𝐵 ) ) )