Metamath Proof Explorer


Theorem sleadd2d

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1 ( 𝜑𝐴 No )
addscand.2 ( 𝜑𝐵 No )
addscand.3 ( 𝜑𝐶 No )
Assertion sleadd2d ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 +s 𝐴 ) ≤s ( 𝐶 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 addscand.1 ( 𝜑𝐴 No )
2 addscand.2 ( 𝜑𝐵 No )
3 addscand.3 ( 𝜑𝐶 No )
4 sleadd2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 +s 𝐴 ) ≤s ( 𝐶 +s 𝐵 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 +s 𝐴 ) ≤s ( 𝐶 +s 𝐵 ) ) )