Step |
Hyp |
Ref |
Expression |
1 |
|
sltlpss |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 <s 𝐵 ↔ ( L ‘ 𝐴 ) ⊊ ( L ‘ 𝐵 ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) |
3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) |
4 |
|
lruneq |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
6 |
5 3
|
difeq12d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∖ ( L ‘ 𝐴 ) ) = ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∖ ( L ‘ 𝐵 ) ) ) |
7 |
|
difundir |
⊢ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∖ ( L ‘ 𝐴 ) ) = ( ( ( L ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) ∪ ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) ) |
8 |
|
difid |
⊢ ( ( L ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) = ∅ |
9 |
8
|
uneq1i |
⊢ ( ( ( L ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) ∪ ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) ) = ( ∅ ∪ ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) ) |
10 |
|
0un |
⊢ ( ∅ ∪ ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) ) = ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) |
11 |
7 9 10
|
3eqtri |
⊢ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∖ ( L ‘ 𝐴 ) ) = ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) |
12 |
|
incom |
⊢ ( ( L ‘ 𝐴 ) ∩ ( R ‘ 𝐴 ) ) = ( ( R ‘ 𝐴 ) ∩ ( L ‘ 𝐴 ) ) |
13 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
14 |
|
ssltdisj |
⊢ ( ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) → ( ( L ‘ 𝐴 ) ∩ ( R ‘ 𝐴 ) ) = ∅ ) |
15 |
13 14
|
mp1i |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) ∩ ( R ‘ 𝐴 ) ) = ∅ ) |
16 |
12 15
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( R ‘ 𝐴 ) ∩ ( L ‘ 𝐴 ) ) = ∅ ) |
17 |
|
disjdif2 |
⊢ ( ( ( R ‘ 𝐴 ) ∩ ( L ‘ 𝐴 ) ) = ∅ → ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) = ( R ‘ 𝐴 ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( R ‘ 𝐴 ) ∖ ( L ‘ 𝐴 ) ) = ( R ‘ 𝐴 ) ) |
19 |
11 18
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∖ ( L ‘ 𝐴 ) ) = ( R ‘ 𝐴 ) ) |
20 |
|
difundir |
⊢ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∖ ( L ‘ 𝐵 ) ) = ( ( ( L ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) ∪ ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) ) |
21 |
|
difid |
⊢ ( ( L ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) = ∅ |
22 |
21
|
uneq1i |
⊢ ( ( ( L ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) ∪ ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) ) = ( ∅ ∪ ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) ) |
23 |
|
0un |
⊢ ( ∅ ∪ ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) ) = ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) |
24 |
20 22 23
|
3eqtri |
⊢ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∖ ( L ‘ 𝐵 ) ) = ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) |
25 |
|
incom |
⊢ ( ( L ‘ 𝐵 ) ∩ ( R ‘ 𝐵 ) ) = ( ( R ‘ 𝐵 ) ∩ ( L ‘ 𝐵 ) ) |
26 |
|
lltropt |
⊢ ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) |
27 |
|
ssltdisj |
⊢ ( ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) → ( ( L ‘ 𝐵 ) ∩ ( R ‘ 𝐵 ) ) = ∅ ) |
28 |
26 27
|
mp1i |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( L ‘ 𝐵 ) ∩ ( R ‘ 𝐵 ) ) = ∅ ) |
29 |
25 28
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( R ‘ 𝐵 ) ∩ ( L ‘ 𝐵 ) ) = ∅ ) |
30 |
|
disjdif2 |
⊢ ( ( ( R ‘ 𝐵 ) ∩ ( L ‘ 𝐵 ) ) = ∅ → ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) = ( R ‘ 𝐵 ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( R ‘ 𝐵 ) ∖ ( L ‘ 𝐵 ) ) = ( R ‘ 𝐵 ) ) |
32 |
24 31
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∖ ( L ‘ 𝐵 ) ) = ( R ‘ 𝐵 ) ) |
33 |
6 19 32
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( R ‘ 𝐴 ) = ( R ‘ 𝐵 ) ) |
34 |
3 33
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) ) |
35 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → 𝐴 ∈ No ) |
36 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
38 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → 𝐵 ∈ No ) |
39 |
|
lrcut |
⊢ ( 𝐵 ∈ No → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 ) |
40 |
38 39
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 ) |
41 |
34 37 40
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) → 𝐴 = 𝐵 ) |
42 |
41
|
ex |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
43 |
2 42
|
impbid2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 = 𝐵 ↔ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) ) |
44 |
1 43
|
orbi12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( ( L ‘ 𝐴 ) ⊊ ( L ‘ 𝐵 ) ∨ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) ) ) |
45 |
|
sleloe |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
46 |
45
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
47 |
|
sspss |
⊢ ( ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝐵 ) ↔ ( ( L ‘ 𝐴 ) ⊊ ( L ‘ 𝐵 ) ∨ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) ) |
48 |
47
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝐵 ) ↔ ( ( L ‘ 𝐴 ) ⊊ ( L ‘ 𝐵 ) ∨ ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) ) ) |
49 |
44 46 48
|
3bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 ≤s 𝐵 ↔ ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝐵 ) ) ) |