| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltmul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
sltmul12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
sltmul12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
sltmul12d.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
| 5 |
2 1 3 4
|
sltmul1d |
⊢ ( 𝜑 → ( 𝐵 <s 𝐴 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 6 |
5
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐵 <s 𝐴 ↔ ¬ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 7 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
| 8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
| 9 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 10 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
| 11 |
|
slenlt |
⊢ ( ( ( 𝐴 ·s 𝐶 ) ∈ No ∧ ( 𝐵 ·s 𝐶 ) ∈ No ) → ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ↔ ¬ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ↔ ¬ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 13 |
6 8 12
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ) ) |