Metamath Proof Explorer


Theorem slemul2d

Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 ( 𝜑𝐴 No )
sltmul12d.2 ( 𝜑𝐵 No )
sltmul12d.3 ( 𝜑𝐶 No )
sltmul12d.4 ( 𝜑 → 0s <s 𝐶 )
Assertion slemul2d ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sltmul12d.1 ( 𝜑𝐴 No )
2 sltmul12d.2 ( 𝜑𝐵 No )
3 sltmul12d.3 ( 𝜑𝐶 No )
4 sltmul12d.4 ( 𝜑 → 0s <s 𝐶 )
5 2 1 3 4 sltmul2d ( 𝜑 → ( 𝐵 <s 𝐴 ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )
6 5 notbid ( 𝜑 → ( ¬ 𝐵 <s 𝐴 ↔ ¬ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )
7 slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
8 1 2 7 syl2anc ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
9 3 1 mulscld ( 𝜑 → ( 𝐶 ·s 𝐴 ) ∈ No )
10 3 2 mulscld ( 𝜑 → ( 𝐶 ·s 𝐵 ) ∈ No )
11 slenlt ( ( ( 𝐶 ·s 𝐴 ) ∈ No ∧ ( 𝐶 ·s 𝐵 ) ∈ No ) → ( ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ↔ ¬ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )
12 9 10 11 syl2anc ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ↔ ¬ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )
13 6 8 12 3bitr4d ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ) )