Step |
Hyp |
Ref |
Expression |
1 |
|
sltmul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltmul12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltmul12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltmul12d.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
5 |
2 1 3 4
|
sltmul2d |
⊢ ( 𝜑 → ( 𝐵 <s 𝐴 ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |
6 |
5
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐵 <s 𝐴 ↔ ¬ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |
7 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
9 |
3 1
|
mulscld |
⊢ ( 𝜑 → ( 𝐶 ·s 𝐴 ) ∈ No ) |
10 |
3 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐶 ·s 𝐵 ) ∈ No ) |
11 |
|
slenlt |
⊢ ( ( ( 𝐶 ·s 𝐴 ) ∈ No ∧ ( 𝐶 ·s 𝐵 ) ∈ No ) → ( ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ↔ ¬ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ↔ ¬ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |
13 |
6 8 12
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) ≤s ( 𝐶 ·s 𝐵 ) ) ) |