| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slemuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
slemuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
slemuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
slemuld.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
| 5 |
|
slemuld.5 |
⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
| 6 |
|
slemuld.6 |
⊢ ( 𝜑 → 𝐶 ≤s 𝐷 ) |
| 7 |
1 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐷 ) ∈ No ) |
| 8 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 9 |
7 8
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ∈ No ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ∈ No ) |
| 11 |
2 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No ) |
| 12 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
| 13 |
11 12
|
subscld |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐴 ∈ No ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐵 ∈ No ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐶 ∈ No ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐷 ∈ No ) |
| 19 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐴 <s 𝐵 ) |
| 20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐶 <s 𝐷 ) |
| 21 |
15 16 17 18 19 20
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 22 |
10 14 21
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 23 |
22
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) ∧ 𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 24 |
|
0sno |
⊢ 0s ∈ No |
| 25 |
|
slerflex |
⊢ ( 0s ∈ No → 0s ≤s 0s ) |
| 26 |
24 25
|
mp1i |
⊢ ( 𝜑 → 0s ≤s 0s ) |
| 27 |
|
subsid |
⊢ ( ( 𝐴 ·s 𝐷 ) ∈ No → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) = 0s ) |
| 28 |
7 27
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) = 0s ) |
| 29 |
|
subsid |
⊢ ( ( 𝐵 ·s 𝐷 ) ∈ No → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) = 0s ) |
| 30 |
11 29
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) = 0s ) |
| 31 |
26 28 30
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝐶 = 𝐷 → ( 𝐴 ·s 𝐶 ) = ( 𝐴 ·s 𝐷 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝐶 = 𝐷 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝐶 = 𝐷 → ( 𝐵 ·s 𝐶 ) = ( 𝐵 ·s 𝐷 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝐶 = 𝐷 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) = ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) |
| 36 |
33 35
|
breq12d |
⊢ ( 𝐶 = 𝐷 → ( ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) ) |
| 37 |
31 36
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐶 = 𝐷 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
| 38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) ∧ 𝐶 = 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 40 |
|
sleloe |
⊢ ( ( 𝐶 ∈ No ∧ 𝐷 ∈ No ) → ( 𝐶 ≤s 𝐷 ↔ ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) ) |
| 41 |
3 4 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ≤s 𝐷 ↔ ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) ) |
| 42 |
6 41
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) → ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) |
| 44 |
23 39 43
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 45 |
|
slerflex |
⊢ ( ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 46 |
13 45
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ·s 𝐷 ) = ( 𝐵 ·s 𝐷 ) ) |
| 48 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ) |
| 49 |
47 48
|
oveq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 50 |
49
|
breq1d |
⊢ ( 𝐴 = 𝐵 → ( ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
| 51 |
46 50
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
| 52 |
51
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
| 53 |
|
sleloe |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 54 |
1 2 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 55 |
5 54
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 56 |
44 52 55
|
mpjaodan |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |