Metamath Proof Explorer


Theorem slemuld

Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses slemuld.1 ( 𝜑𝐴 No )
slemuld.2 ( 𝜑𝐵 No )
slemuld.3 ( 𝜑𝐶 No )
slemuld.4 ( 𝜑𝐷 No )
slemuld.5 ( 𝜑𝐴 ≤s 𝐵 )
slemuld.6 ( 𝜑𝐶 ≤s 𝐷 )
Assertion slemuld ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 slemuld.1 ( 𝜑𝐴 No )
2 slemuld.2 ( 𝜑𝐵 No )
3 slemuld.3 ( 𝜑𝐶 No )
4 slemuld.4 ( 𝜑𝐷 No )
5 slemuld.5 ( 𝜑𝐴 ≤s 𝐵 )
6 slemuld.6 ( 𝜑𝐶 ≤s 𝐷 )
7 1 4 mulscld ( 𝜑 → ( 𝐴 ·s 𝐷 ) ∈ No )
8 1 3 mulscld ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No )
9 7 8 subscld ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ∈ No )
10 9 adantr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ∈ No )
11 2 4 mulscld ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No )
12 2 3 mulscld ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No )
13 11 12 subscld ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No )
14 13 adantr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No )
15 1 adantr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → 𝐴 No )
16 2 adantr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → 𝐵 No )
17 3 adantr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → 𝐶 No )
18 4 adantr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → 𝐷 No )
19 simprl ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → 𝐴 <s 𝐵 )
20 simprr ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → 𝐶 <s 𝐷 )
21 15 16 17 18 19 20 sltmuld ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
22 10 14 21 sltled ( ( 𝜑 ∧ ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
23 22 anassrs ( ( ( 𝜑𝐴 <s 𝐵 ) ∧ 𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
24 0sno 0s No
25 slerflex ( 0s No → 0s ≤s 0s )
26 24 25 mp1i ( 𝜑 → 0s ≤s 0s )
27 subsid ( ( 𝐴 ·s 𝐷 ) ∈ No → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) = 0s )
28 7 27 syl ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) = 0s )
29 subsid ( ( 𝐵 ·s 𝐷 ) ∈ No → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) = 0s )
30 11 29 syl ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) = 0s )
31 26 28 30 3brtr4d ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) )
32 oveq2 ( 𝐶 = 𝐷 → ( 𝐴 ·s 𝐶 ) = ( 𝐴 ·s 𝐷 ) )
33 32 oveq2d ( 𝐶 = 𝐷 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) )
34 oveq2 ( 𝐶 = 𝐷 → ( 𝐵 ·s 𝐶 ) = ( 𝐵 ·s 𝐷 ) )
35 34 oveq2d ( 𝐶 = 𝐷 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) = ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) )
36 33 35 breq12d ( 𝐶 = 𝐷 → ( ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) )
37 31 36 syl5ibrcom ( 𝜑 → ( 𝐶 = 𝐷 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )
38 37 imp ( ( 𝜑𝐶 = 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
39 38 adantlr ( ( ( 𝜑𝐴 <s 𝐵 ) ∧ 𝐶 = 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
40 sleloe ( ( 𝐶 No 𝐷 No ) → ( 𝐶 ≤s 𝐷 ↔ ( 𝐶 <s 𝐷𝐶 = 𝐷 ) ) )
41 3 4 40 syl2anc ( 𝜑 → ( 𝐶 ≤s 𝐷 ↔ ( 𝐶 <s 𝐷𝐶 = 𝐷 ) ) )
42 6 41 mpbid ( 𝜑 → ( 𝐶 <s 𝐷𝐶 = 𝐷 ) )
43 42 adantr ( ( 𝜑𝐴 <s 𝐵 ) → ( 𝐶 <s 𝐷𝐶 = 𝐷 ) )
44 23 39 43 mpjaodan ( ( 𝜑𝐴 <s 𝐵 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
45 slerflex ( ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
46 13 45 syl ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
47 oveq1 ( 𝐴 = 𝐵 → ( 𝐴 ·s 𝐷 ) = ( 𝐵 ·s 𝐷 ) )
48 oveq1 ( 𝐴 = 𝐵 → ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) )
49 47 48 oveq12d ( 𝐴 = 𝐵 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
50 49 breq1d ( 𝐴 = 𝐵 → ( ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )
51 46 50 syl5ibrcom ( 𝜑 → ( 𝐴 = 𝐵 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )
52 51 imp ( ( 𝜑𝐴 = 𝐵 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )
53 sleloe ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ) )
54 1 2 53 syl2anc ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵𝐴 = 𝐵 ) ) )
55 5 54 mpbid ( 𝜑 → ( 𝐴 <s 𝐵𝐴 = 𝐵 ) )
56 44 52 55 mpjaodan ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )