Step |
Hyp |
Ref |
Expression |
1 |
|
slemuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
slemuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
slemuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
slemuld.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
|
slemuld.5 |
⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
6 |
|
slemuld.6 |
⊢ ( 𝜑 → 𝐶 ≤s 𝐷 ) |
7 |
1 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐷 ) ∈ No ) |
8 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
9 |
7 8
|
subscld |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ∈ No ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ∈ No ) |
11 |
2 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No ) |
12 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
13 |
11 12
|
subscld |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐴 ∈ No ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐵 ∈ No ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐶 ∈ No ) |
18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐷 ∈ No ) |
19 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐴 <s 𝐵 ) |
20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → 𝐶 <s 𝐷 ) |
21 |
15 16 17 18 19 20
|
sltmuld |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
22 |
10 14 21
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
23 |
22
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) ∧ 𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
24 |
|
0sno |
⊢ 0s ∈ No |
25 |
|
slerflex |
⊢ ( 0s ∈ No → 0s ≤s 0s ) |
26 |
24 25
|
mp1i |
⊢ ( 𝜑 → 0s ≤s 0s ) |
27 |
|
subsid |
⊢ ( ( 𝐴 ·s 𝐷 ) ∈ No → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) = 0s ) |
28 |
7 27
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) = 0s ) |
29 |
|
subsid |
⊢ ( ( 𝐵 ·s 𝐷 ) ∈ No → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) = 0s ) |
30 |
11 29
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) = 0s ) |
31 |
26 28 30
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝐶 = 𝐷 → ( 𝐴 ·s 𝐶 ) = ( 𝐴 ·s 𝐷 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝐶 = 𝐷 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝐶 = 𝐷 → ( 𝐵 ·s 𝐶 ) = ( 𝐵 ·s 𝐷 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝐶 = 𝐷 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) = ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) |
36 |
33 35
|
breq12d |
⊢ ( 𝐶 = 𝐷 → ( ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐷 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐷 ) ) ) ) |
37 |
31 36
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐶 = 𝐷 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) ∧ 𝐶 = 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
40 |
|
sleloe |
⊢ ( ( 𝐶 ∈ No ∧ 𝐷 ∈ No ) → ( 𝐶 ≤s 𝐷 ↔ ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) ) |
41 |
3 4 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ≤s 𝐷 ↔ ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) ) |
42 |
6 41
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) → ( 𝐶 <s 𝐷 ∨ 𝐶 = 𝐷 ) ) |
44 |
23 39 43
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝐴 <s 𝐵 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
45 |
|
slerflex |
⊢ ( ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ∈ No → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
46 |
13 45
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
47 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ·s 𝐷 ) = ( 𝐵 ·s 𝐷 ) ) |
48 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ) |
49 |
47 48
|
oveq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) = ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
50 |
49
|
breq1d |
⊢ ( 𝐴 = 𝐵 → ( ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
51 |
46 50
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
52 |
51
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |
53 |
|
sleloe |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
54 |
1 2 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
55 |
5 54
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ) ) |
56 |
44 52 55
|
mpjaodan |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) ≤s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |