Metamath Proof Explorer


Theorem sleneg

Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sleneg ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ( -us𝐵 ) ≤s ( -us𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltneg ( ( 𝐵 No 𝐴 No ) → ( 𝐵 <s 𝐴 ↔ ( -us𝐴 ) <s ( -us𝐵 ) ) )
2 1 ancoms ( ( 𝐴 No 𝐵 No ) → ( 𝐵 <s 𝐴 ↔ ( -us𝐴 ) <s ( -us𝐵 ) ) )
3 2 notbid ( ( 𝐴 No 𝐵 No ) → ( ¬ 𝐵 <s 𝐴 ↔ ¬ ( -us𝐴 ) <s ( -us𝐵 ) ) )
4 slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
5 negscl ( 𝐵 No → ( -us𝐵 ) ∈ No )
6 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
7 slenlt ( ( ( -us𝐵 ) ∈ No ∧ ( -us𝐴 ) ∈ No ) → ( ( -us𝐵 ) ≤s ( -us𝐴 ) ↔ ¬ ( -us𝐴 ) <s ( -us𝐵 ) ) )
8 5 6 7 syl2anr ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐵 ) ≤s ( -us𝐴 ) ↔ ¬ ( -us𝐴 ) <s ( -us𝐵 ) ) )
9 3 4 8 3bitr4d ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ( -us𝐵 ) ≤s ( -us𝐴 ) ) )