Step |
Hyp |
Ref |
Expression |
1 |
|
sltneg |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s ( -us ‘ 𝐵 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s ( -us ‘ 𝐵 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ 𝐵 <s 𝐴 ↔ ¬ ( -us ‘ 𝐴 ) <s ( -us ‘ 𝐵 ) ) ) |
4 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
5 |
|
negscl |
⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) |
6 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
7 |
|
slenlt |
⊢ ( ( ( -us ‘ 𝐵 ) ∈ No ∧ ( -us ‘ 𝐴 ) ∈ No ) → ( ( -us ‘ 𝐵 ) ≤s ( -us ‘ 𝐴 ) ↔ ¬ ( -us ‘ 𝐴 ) <s ( -us ‘ 𝐵 ) ) ) |
8 |
5 6 7
|
syl2anr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐵 ) ≤s ( -us ‘ 𝐴 ) ↔ ¬ ( -us ‘ 𝐴 ) <s ( -us ‘ 𝐵 ) ) ) |
9 |
3 4 8
|
3bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ( -us ‘ 𝐵 ) ≤s ( -us ‘ 𝐴 ) ) ) |