Metamath Proof Explorer


Theorem slenegd

Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltnegd.1 ( 𝜑𝐴 No )
sltnegd.2 ( 𝜑𝐵 No )
Assertion slenegd ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( -us𝐵 ) ≤s ( -us𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltnegd.1 ( 𝜑𝐴 No )
2 sltnegd.2 ( 𝜑𝐵 No )
3 sleneg ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ( -us𝐵 ) ≤s ( -us𝐴 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( -us𝐵 ) ≤s ( -us𝐴 ) ) )