| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scutcl |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 2 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 3 |
|
scutcl |
⊢ ( 𝐶 <<s 𝐷 → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 4 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 5 |
|
ssltss2 |
⊢ ( 𝐶 <<s 𝐷 → 𝐷 ⊆ No ) |
| 6 |
5
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → 𝐷 ⊆ No ) |
| 7 |
6
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ No ) |
| 8 |
|
simplr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) |
| 9 |
|
scutcut |
⊢ ( 𝐶 <<s 𝐷 → ( ( 𝐶 |s 𝐷 ) ∈ No ∧ 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ∧ { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) ) |
| 10 |
9
|
simp3d |
⊢ ( 𝐶 <<s 𝐷 → { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) |
| 12 |
|
ssltsep |
⊢ ( { ( 𝐶 |s 𝐷 ) } <<s 𝐷 → ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) |
| 14 |
|
ovex |
⊢ ( 𝐶 |s 𝐷 ) ∈ V |
| 15 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑑 ↔ ( 𝐶 |s 𝐷 ) <s 𝑑 ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐶 |s 𝐷 ) <s 𝑑 ) ) |
| 17 |
14 16
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐶 |s 𝐷 ) <s 𝑑 ) |
| 18 |
13 17
|
sylib |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑑 ∈ 𝐷 ( 𝐶 |s 𝐷 ) <s 𝑑 ) |
| 19 |
18
|
r19.21bi |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 |s 𝐷 ) <s 𝑑 ) |
| 20 |
2 4 7 8 19
|
slelttrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
| 21 |
20
|
ralrimiva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
| 22 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → 𝐴 ⊆ No ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → 𝐴 ⊆ No ) |
| 25 |
24
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ No ) |
| 26 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 27 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 28 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 29 |
28
|
simp2d |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 32 |
|
ssltsep |
⊢ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } → ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ) |
| 34 |
33
|
r19.21bi |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ) |
| 35 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
| 36 |
|
breq2 |
⊢ ( 𝑑 = ( 𝐴 |s 𝐵 ) → ( 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐴 |s 𝐵 ) ) ) |
| 37 |
35 36
|
ralsn |
⊢ ( ∀ 𝑑 ∈ { ( 𝐴 |s 𝐵 ) } 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
| 38 |
34 37
|
sylib |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
| 39 |
|
simplr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) |
| 40 |
25 26 27 38 39
|
sltletrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
| 41 |
40
|
ralrimiva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
| 42 |
21 41
|
jca |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) → ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
| 43 |
|
bdayelon |
⊢ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ On |
| 44 |
43
|
onordi |
⊢ Ord ( bday ‘ ( 𝐴 |s 𝐵 ) ) |
| 45 |
|
ordn2lp |
⊢ ( Ord ( bday ‘ ( 𝐴 |s 𝐵 ) ) → ¬ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) |
| 46 |
44 45
|
ax-mp |
⊢ ¬ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
| 47 |
3
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 48 |
1
|
adantr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 50 |
|
sltnle |
⊢ ( ( ( 𝐶 |s 𝐷 ) ∈ No ∧ ( 𝐴 |s 𝐵 ) ∈ No ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ↔ ¬ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ) |
| 51 |
47 49 50
|
syl2anc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ↔ ¬ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ) |
| 52 |
3
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 53 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ∈ V ) |
| 54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐴 ∈ V ) |
| 55 |
|
snex |
⊢ { ( 𝐶 |s 𝐷 ) } ∈ V |
| 56 |
54 55
|
jctir |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 ∈ V ∧ { ( 𝐶 |s 𝐷 ) } ∈ V ) ) |
| 57 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐴 ⊆ No ) |
| 58 |
52
|
snssd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐶 |s 𝐷 ) } ⊆ No ) |
| 59 |
|
simplrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
| 60 |
|
breq2 |
⊢ ( 𝑑 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
| 61 |
14 60
|
ralsn |
⊢ ( ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ↔ 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
| 62 |
61
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) |
| 63 |
59 62
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ) |
| 64 |
57 58 63
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 ⊆ No ∧ { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ) ) |
| 65 |
|
brsslt |
⊢ ( 𝐴 <<s { ( 𝐶 |s 𝐷 ) } ↔ ( ( 𝐴 ∈ V ∧ { ( 𝐶 |s 𝐷 ) } ∈ V ) ∧ ( 𝐴 ⊆ No ∧ { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑎 <s 𝑑 ) ) ) |
| 66 |
56 64 65
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐴 <<s { ( 𝐶 |s 𝐷 ) } ) |
| 67 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ∈ V ) |
| 68 |
67
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐵 ∈ V ) |
| 69 |
68 55
|
jctil |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐶 |s 𝐷 ) } ∈ V ∧ 𝐵 ∈ V ) ) |
| 70 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| 71 |
70
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐵 ⊆ No ) |
| 72 |
52
|
adantr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 73 |
48
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 74 |
71
|
sselda |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
| 75 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) |
| 76 |
28
|
simp3d |
⊢ ( 𝐴 <<s 𝐵 → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
| 77 |
76
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
| 78 |
|
ssltsep |
⊢ ( { ( 𝐴 |s 𝐵 ) } <<s 𝐵 → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
| 80 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( 𝑎 <s 𝑏 ↔ ( 𝐴 |s 𝐵 ) <s 𝑏 ) ) |
| 81 |
80
|
ralbidv |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐴 |s 𝐵 ) <s 𝑏 ) ) |
| 82 |
35 81
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
| 83 |
79 82
|
sylib |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑏 ∈ 𝐵 ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
| 84 |
83
|
r19.21bi |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
| 85 |
72 73 74 75 84
|
slttrd |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 |s 𝐷 ) <s 𝑏 ) |
| 86 |
85
|
ralrimiva |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑏 ∈ 𝐵 ( 𝐶 |s 𝐷 ) <s 𝑏 ) |
| 87 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑏 ↔ ( 𝐶 |s 𝐷 ) <s 𝑏 ) ) |
| 88 |
87
|
ralbidv |
⊢ ( 𝑎 = ( 𝐶 |s 𝐷 ) → ( ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐶 |s 𝐷 ) <s 𝑏 ) ) |
| 89 |
14 88
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ( 𝐶 |s 𝐷 ) <s 𝑏 ) |
| 90 |
86 89
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) |
| 91 |
58 71 90
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ) |
| 92 |
|
brsslt |
⊢ ( { ( 𝐶 |s 𝐷 ) } <<s 𝐵 ↔ ( ( { ( 𝐶 |s 𝐷 ) } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { ( 𝐶 |s 𝐷 ) } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐶 |s 𝐷 ) } ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) ) ) |
| 93 |
69 91 92
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐶 |s 𝐷 ) } <<s 𝐵 ) |
| 94 |
|
sltirr |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ No → ¬ ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ) |
| 95 |
49 94
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ¬ ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ) |
| 96 |
|
breq1 |
⊢ ( ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) → ( ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ↔ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ) |
| 97 |
96
|
notbid |
⊢ ( ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) → ( ¬ ( 𝐴 |s 𝐵 ) <s ( 𝐴 |s 𝐵 ) ↔ ¬ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ) |
| 98 |
95 97
|
syl5ibcom |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) → ¬ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ) |
| 99 |
98
|
necon2ad |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) → ( 𝐴 |s 𝐵 ) ≠ ( 𝐶 |s 𝐷 ) ) ) |
| 100 |
99
|
imp |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 |s 𝐵 ) ≠ ( 𝐶 |s 𝐷 ) ) |
| 101 |
100
|
necomd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 |s 𝐷 ) ≠ ( 𝐴 |s 𝐵 ) ) |
| 102 |
|
scutbdaylt |
⊢ ( ( ( 𝐶 |s 𝐷 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐶 |s 𝐷 ) } ∧ { ( 𝐶 |s 𝐷 ) } <<s 𝐵 ) ∧ ( 𝐶 |s 𝐷 ) ≠ ( 𝐴 |s 𝐵 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ) |
| 103 |
52 66 93 101 102
|
syl121anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ) |
| 104 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 105 |
|
ssltex1 |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 ∈ V ) |
| 106 |
105
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 ∈ V ) |
| 107 |
|
snex |
⊢ { ( 𝐴 |s 𝐵 ) } ∈ V |
| 108 |
106 107
|
jctir |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 ∈ V ∧ { ( 𝐴 |s 𝐵 ) } ∈ V ) ) |
| 109 |
|
ssltss1 |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 ⊆ No ) |
| 110 |
109
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 ⊆ No ) |
| 111 |
104
|
snssd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐴 |s 𝐵 ) } ⊆ No ) |
| 112 |
110
|
sselda |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ No ) |
| 113 |
52
|
adantr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 114 |
48
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 115 |
9
|
simp2d |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ) |
| 116 |
115
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ) |
| 117 |
|
ssltsep |
⊢ ( 𝐶 <<s { ( 𝐶 |s 𝐷 ) } → ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ) |
| 118 |
116 117
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ) |
| 119 |
118
|
r19.21bi |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ) |
| 120 |
|
breq2 |
⊢ ( 𝑑 = ( 𝐶 |s 𝐷 ) → ( 𝑐 <s 𝑑 ↔ 𝑐 <s ( 𝐶 |s 𝐷 ) ) ) |
| 121 |
14 120
|
ralsn |
⊢ ( ∀ 𝑑 ∈ { ( 𝐶 |s 𝐷 ) } 𝑐 <s 𝑑 ↔ 𝑐 <s ( 𝐶 |s 𝐷 ) ) |
| 122 |
119 121
|
sylib |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 <s ( 𝐶 |s 𝐷 ) ) |
| 123 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) |
| 124 |
112 113 114 122 123
|
slttrd |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 <s ( 𝐴 |s 𝐵 ) ) |
| 125 |
|
breq2 |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( 𝑐 <s 𝑎 ↔ 𝑐 <s ( 𝐴 |s 𝐵 ) ) ) |
| 126 |
35 125
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ↔ 𝑐 <s ( 𝐴 |s 𝐵 ) ) |
| 127 |
124 126
|
sylibr |
⊢ ( ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) |
| 128 |
127
|
ralrimiva |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑐 ∈ 𝐶 ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) |
| 129 |
110 111 128
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( 𝐶 ⊆ No ∧ { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ ∀ 𝑐 ∈ 𝐶 ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) ) |
| 130 |
|
brsslt |
⊢ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ↔ ( ( 𝐶 ∈ V ∧ { ( 𝐴 |s 𝐵 ) } ∈ V ) ∧ ( 𝐶 ⊆ No ∧ { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ ∀ 𝑐 ∈ 𝐶 ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } 𝑐 <s 𝑎 ) ) ) |
| 131 |
108 129 130
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) |
| 132 |
|
ssltex2 |
⊢ ( 𝐶 <<s 𝐷 → 𝐷 ∈ V ) |
| 133 |
132
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐷 ∈ V ) |
| 134 |
133 107
|
jctil |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐴 |s 𝐵 ) } ∈ V ∧ 𝐷 ∈ V ) ) |
| 135 |
5
|
ad3antlr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → 𝐷 ⊆ No ) |
| 136 |
|
simplrl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
| 137 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( 𝑎 <s 𝑑 ↔ ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
| 138 |
137
|
ralbidv |
⊢ ( 𝑎 = ( 𝐴 |s 𝐵 ) → ( ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
| 139 |
35 138
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) |
| 140 |
136 139
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) |
| 141 |
111 135 140
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ 𝐷 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) ) |
| 142 |
|
brsslt |
⊢ ( { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ↔ ( ( { ( 𝐴 |s 𝐵 ) } ∈ V ∧ 𝐷 ∈ V ) ∧ ( { ( 𝐴 |s 𝐵 ) } ⊆ No ∧ 𝐷 ⊆ No ∧ ∀ 𝑎 ∈ { ( 𝐴 |s 𝐵 ) } ∀ 𝑑 ∈ 𝐷 𝑎 <s 𝑑 ) ) ) |
| 143 |
134 141 142
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) |
| 144 |
|
scutbdaylt |
⊢ ( ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ ( 𝐴 |s 𝐵 ) ≠ ( 𝐶 |s 𝐷 ) ) → ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
| 145 |
104 131 143 100 144
|
syl121anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
| 146 |
103 145
|
jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ∧ ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) |
| 147 |
146
|
ex |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ( 𝐶 |s 𝐷 ) <s ( 𝐴 |s 𝐵 ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) ) |
| 148 |
51 147
|
sylbird |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( ¬ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∧ ( bday ‘ ( 𝐶 |s 𝐷 ) ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) ) ) |
| 149 |
46 148
|
mt3i |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) → ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) |
| 150 |
42 149
|
impbida |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → ( ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ) |
| 151 |
|
breq12 |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( 𝑋 ≤s 𝑌 ↔ ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ) ) |
| 152 |
|
breq1 |
⊢ ( 𝑋 = ( 𝐴 |s 𝐵 ) → ( 𝑋 <s 𝑑 ↔ ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
| 153 |
152
|
ralbidv |
⊢ ( 𝑋 = ( 𝐴 |s 𝐵 ) → ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ↔ ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ) ) |
| 154 |
|
breq2 |
⊢ ( 𝑌 = ( 𝐶 |s 𝐷 ) → ( 𝑎 <s 𝑌 ↔ 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
| 155 |
154
|
ralbidv |
⊢ ( 𝑌 = ( 𝐶 |s 𝐷 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) |
| 156 |
153 155
|
bi2anan9 |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ) |
| 157 |
151 156
|
bibi12d |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) ↔ ( ( 𝐴 |s 𝐵 ) ≤s ( 𝐶 |s 𝐷 ) ↔ ( ∀ 𝑑 ∈ 𝐷 ( 𝐴 |s 𝐵 ) <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s ( 𝐶 |s 𝐷 ) ) ) ) ) |
| 158 |
150 157
|
imbitrrid |
⊢ ( ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) → ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) ) ) |
| 159 |
158
|
impcom |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 ≤s 𝑌 ↔ ( ∀ 𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑌 ) ) ) |