Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
slesolex.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
slesolex.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
4 |
|
slesolex.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
5 |
|
slesolex.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
11 |
1 2
|
matrcl |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
12 |
11
|
simpld |
⊢ ( 𝑋 ∈ 𝐵 → 𝑁 ∈ Fin ) |
13 |
12
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑁 ∈ Fin ) |
15 |
9 13
|
anim12ci |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
16 |
15
|
3adant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
17 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ∈ Ring ) |
19 |
|
eqid |
⊢ ( Unit ‘ 𝐴 ) = ( Unit ‘ 𝐴 ) |
20 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
21 |
1 5 2 19 20
|
matunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( Unit ‘ 𝐴 ) ↔ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
22 |
21
|
bicomd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) ) |
23 |
22
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) ) |
24 |
23
|
biimp3a |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑋 ∈ ( Unit ‘ 𝐴 ) ) |
25 |
|
eqid |
⊢ ( invr ‘ 𝐴 ) = ( invr ‘ 𝐴 ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
27 |
19 25 26
|
ringinvcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) → ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐴 ) ) |
28 |
18 24 27
|
syl2anc |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐴 ) ) |
29 |
3
|
eleq2i |
⊢ ( 𝑌 ∈ 𝑉 ↔ 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
30 |
29
|
biimpi |
⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
33 |
1 4 6 7 10 14 28 32
|
mavmulcl |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) · 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
34 |
33 3
|
eleqtrrdi |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) · 𝑌 ) ∈ 𝑉 ) |
35 |
1 2 3 4 5 25
|
slesolinvbi |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 · 𝑧 ) = 𝑌 ↔ 𝑧 = ( ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) · 𝑌 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝑋 · 𝑧 ) = 𝑌 ↔ 𝑧 = ( ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) · 𝑌 ) ) ) |
37 |
36
|
biimprd |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑧 = ( ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) · 𝑌 ) → ( 𝑋 · 𝑧 ) = 𝑌 ) ) |
38 |
37
|
impancom |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑧 = ( ( ( invr ‘ 𝐴 ) ‘ 𝑋 ) · 𝑌 ) ) → ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 · 𝑧 ) = 𝑌 ) ) |
39 |
34 38
|
rspcimedv |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ∃ 𝑧 ∈ 𝑉 ( 𝑋 · 𝑧 ) = 𝑌 ) ) |
40 |
39
|
pm2.43i |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ∃ 𝑧 ∈ 𝑉 ( 𝑋 · 𝑧 ) = 𝑌 ) |