Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
slesolex.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
slesolex.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
4 |
|
slesolex.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
5 |
|
slesolex.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
6 |
|
slesolinv.i |
⊢ 𝐼 = ( invr ‘ 𝐴 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑅 ∈ Ring ) |
11 |
1 2
|
matrcl |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
12 |
11
|
simpld |
⊢ ( 𝑋 ∈ 𝐵 → 𝑁 ∈ Fin ) |
13 |
12
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑁 ∈ Fin ) |
15 |
8
|
anim2i |
⊢ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) → ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ) |
16 |
15
|
anim1i |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) ) |
17 |
16
|
3adant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
20 |
1 2 3 4
|
slesolvec |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑍 ) = 𝑌 → 𝑍 ∈ 𝑉 ) ) |
21 |
17 19 20
|
sylc |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑍 ∈ 𝑉 ) |
22 |
21 3
|
eleqtrdi |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑍 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
23 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
24 |
9 13
|
anim12ci |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
25 |
24
|
3adant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
26 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
27 |
25 26
|
syl |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝐴 ∈ Ring ) |
28 |
|
eqid |
⊢ ( Unit ‘ 𝐴 ) = ( Unit ‘ 𝐴 ) |
29 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
30 |
1 5 2 28 29
|
matunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( Unit ‘ 𝐴 ) ↔ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
31 |
30
|
bicomd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) ) |
32 |
31
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) ) |
33 |
32
|
biimpd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) → 𝑋 ∈ ( Unit ‘ 𝐴 ) ) ) |
34 |
33
|
adantrd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝑋 ∈ ( Unit ‘ 𝐴 ) ) ) |
35 |
34
|
3impia |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑋 ∈ ( Unit ‘ 𝐴 ) ) |
36 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
37 |
28 6 36
|
ringinvcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐴 ) ) |
38 |
27 35 37
|
syl2anc |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐴 ) ) |
39 |
2
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
40 |
39
|
biimpi |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
43 |
1 7 4 10 14 22 23 38 42
|
mavmulass |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑋 ) · 𝑍 ) = ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑍 ) ) ) |
44 |
|
simpr |
⊢ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
45 |
44 13
|
anim12ci |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
46 |
45
|
3adant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
47 |
1 23
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
49 |
48
|
oveqd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑋 ) = ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝐴 ) 𝑋 ) ) |
50 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
51 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
52 |
28 6 50 51
|
unitlinv |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝐴 ) 𝑋 ) = ( 1r ‘ 𝐴 ) ) |
53 |
27 35 52
|
syl2anc |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝐴 ) 𝑋 ) = ( 1r ‘ 𝐴 ) ) |
54 |
49 53
|
eqtrd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑋 ) = ( 1r ‘ 𝐴 ) ) |
55 |
54
|
oveq1d |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑋 ) · 𝑍 ) = ( ( 1r ‘ 𝐴 ) · 𝑍 ) ) |
56 |
1 7 4 10 14 22
|
1mavmul |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( 1r ‘ 𝐴 ) · 𝑍 ) = 𝑍 ) |
57 |
55 56
|
eqtrd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑋 ) · 𝑍 ) = 𝑍 ) |
58 |
|
oveq2 |
⊢ ( ( 𝑋 · 𝑍 ) = 𝑌 → ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑍 ) ) = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑍 ) ) = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) |
60 |
59
|
3ad2ant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑍 ) ) = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) |
61 |
43 57 60
|
3eqtr3d |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑍 = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) |