Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubadd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltsubadd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltsubadd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
3 2 1
|
sltaddsubd |
⊢ ( 𝜑 → ( ( 𝐶 +s 𝐵 ) <s 𝐴 ↔ 𝐶 <s ( 𝐴 -s 𝐵 ) ) ) |
5 |
4
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝐶 +s 𝐵 ) <s 𝐴 ↔ ¬ 𝐶 <s ( 𝐴 -s 𝐵 ) ) ) |
6 |
3 2
|
addscld |
⊢ ( 𝜑 → ( 𝐶 +s 𝐵 ) ∈ No ) |
7 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝐶 +s 𝐵 ) ∈ No ) → ( 𝐴 ≤s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) <s 𝐴 ) ) |
8 |
1 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) <s 𝐴 ) ) |
9 |
1 2
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
10 |
|
slenlt |
⊢ ( ( ( 𝐴 -s 𝐵 ) ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶 ↔ ¬ 𝐶 <s ( 𝐴 -s 𝐵 ) ) ) |
11 |
9 3 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶 ↔ ¬ 𝐶 <s ( 𝐴 -s 𝐵 ) ) ) |
12 |
5 8 11
|
3bitr4rd |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶 ↔ 𝐴 ≤s ( 𝐶 +s 𝐵 ) ) ) |