Metamath Proof Explorer


Theorem slesubaddd

Description: Surreal less-than or equal relationship between subtraction and addition. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypotheses sltsubadd.1 ( 𝜑𝐴 No )
sltsubadd.2 ( 𝜑𝐵 No )
sltsubadd.3 ( 𝜑𝐶 No )
Assertion slesubaddd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶𝐴 ≤s ( 𝐶 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubadd.1 ( 𝜑𝐴 No )
2 sltsubadd.2 ( 𝜑𝐵 No )
3 sltsubadd.3 ( 𝜑𝐶 No )
4 3 2 1 sltaddsubd ( 𝜑 → ( ( 𝐶 +s 𝐵 ) <s 𝐴𝐶 <s ( 𝐴 -s 𝐵 ) ) )
5 4 notbid ( 𝜑 → ( ¬ ( 𝐶 +s 𝐵 ) <s 𝐴 ↔ ¬ 𝐶 <s ( 𝐴 -s 𝐵 ) ) )
6 3 2 addscld ( 𝜑 → ( 𝐶 +s 𝐵 ) ∈ No )
7 slenlt ( ( 𝐴 No ∧ ( 𝐶 +s 𝐵 ) ∈ No ) → ( 𝐴 ≤s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) <s 𝐴 ) )
8 1 6 7 syl2anc ( 𝜑 → ( 𝐴 ≤s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) <s 𝐴 ) )
9 1 2 subscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )
10 slenlt ( ( ( 𝐴 -s 𝐵 ) ∈ No 𝐶 No ) → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶 ↔ ¬ 𝐶 <s ( 𝐴 -s 𝐵 ) ) )
11 9 3 10 syl2anc ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶 ↔ ¬ 𝐶 <s ( 𝐴 -s 𝐵 ) ) )
12 5 8 11 3bitr4rd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s 𝐶𝐴 ≤s ( 𝐶 +s 𝐵 ) ) )