Metamath Proof Explorer


Theorem slesubsub2bd

Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses sltsubsubbd.1 ( 𝜑𝐴 No )
sltsubsubbd.2 ( 𝜑𝐵 No )
sltsubsubbd.3 ( 𝜑𝐶 No )
sltsubsubbd.4 ( 𝜑𝐷 No )
Assertion slesubsub2bd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 ( 𝜑𝐴 No )
2 sltsubsubbd.2 ( 𝜑𝐵 No )
3 sltsubsubbd.3 ( 𝜑𝐶 No )
4 sltsubsubbd.4 ( 𝜑𝐷 No )
5 3 4 1 2 sltsubsub2bd ( 𝜑 → ( ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ↔ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) )
6 5 notbid ( 𝜑 → ( ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ↔ ¬ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) )
7 1 2 subscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )
8 3 4 subscld ( 𝜑 → ( 𝐶 -s 𝐷 ) ∈ No )
9 slenlt ( ( ( 𝐴 -s 𝐵 ) ∈ No ∧ ( 𝐶 -s 𝐷 ) ∈ No ) → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) )
10 7 8 9 syl2anc ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) )
11 4 3 subscld ( 𝜑 → ( 𝐷 -s 𝐶 ) ∈ No )
12 2 1 subscld ( 𝜑 → ( 𝐵 -s 𝐴 ) ∈ No )
13 slenlt ( ( ( 𝐷 -s 𝐶 ) ∈ No ∧ ( 𝐵 -s 𝐴 ) ∈ No ) → ( ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ↔ ¬ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) )
14 11 12 13 syl2anc ( 𝜑 → ( ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ↔ ¬ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) )
15 6 10 14 3bitr4d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ) )