Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubsubbd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltsubsubbd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltsubsubbd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltsubsubbd.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
2 1 4 3
|
sltsubsub3bd |
⊢ ( 𝜑 → ( ( 𝐵 -s 𝐷 ) <s ( 𝐴 -s 𝐶 ) ↔ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) ) |
6 |
5
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝐵 -s 𝐷 ) <s ( 𝐴 -s 𝐶 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) ) |
7 |
1 3
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐶 ) ∈ No ) |
8 |
2 4
|
subscld |
⊢ ( 𝜑 → ( 𝐵 -s 𝐷 ) ∈ No ) |
9 |
|
slenlt |
⊢ ( ( ( 𝐴 -s 𝐶 ) ∈ No ∧ ( 𝐵 -s 𝐷 ) ∈ No ) → ( ( 𝐴 -s 𝐶 ) ≤s ( 𝐵 -s 𝐷 ) ↔ ¬ ( 𝐵 -s 𝐷 ) <s ( 𝐴 -s 𝐶 ) ) ) |
10 |
7 8 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) ≤s ( 𝐵 -s 𝐷 ) ↔ ¬ ( 𝐵 -s 𝐷 ) <s ( 𝐴 -s 𝐶 ) ) ) |
11 |
1 2
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
12 |
3 4
|
subscld |
⊢ ( 𝜑 → ( 𝐶 -s 𝐷 ) ∈ No ) |
13 |
|
slenlt |
⊢ ( ( ( 𝐴 -s 𝐵 ) ∈ No ∧ ( 𝐶 -s 𝐷 ) ∈ No ) → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) ) |
14 |
11 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) ) |
15 |
6 10 14
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) ≤s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ) ) |