Description: Surreal trichotomy law. (Contributed by Scott Fenton, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | sletric | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltasym | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 <s 𝐴 → ¬ 𝐴 <s 𝐵 ) ) | |
2 | sltnle | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵 ) ) | |
3 | 2 | bicomd | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( ¬ 𝐴 ≤s 𝐵 ↔ 𝐵 <s 𝐴 ) ) |
4 | slenlt | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) | |
5 | 1 3 4 | 3imtr4d | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( ¬ 𝐴 ≤s 𝐵 → 𝐵 ≤s 𝐴 ) ) |
6 | 5 | orrd | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴 ) ) |
7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴 ) ) |