Metamath Proof Explorer


Theorem sletric

Description: Surreal trichotomy law. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion sletric ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sltasym ( ( 𝐵 No 𝐴 No ) → ( 𝐵 <s 𝐴 → ¬ 𝐴 <s 𝐵 ) )
2 sltnle ( ( 𝐵 No 𝐴 No ) → ( 𝐵 <s 𝐴 ↔ ¬ 𝐴 ≤s 𝐵 ) )
3 2 bicomd ( ( 𝐵 No 𝐴 No ) → ( ¬ 𝐴 ≤s 𝐵𝐵 <s 𝐴 ) )
4 slenlt ( ( 𝐵 No 𝐴 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
5 1 3 4 3imtr4d ( ( 𝐵 No 𝐴 No ) → ( ¬ 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) )
6 5 orrd ( ( 𝐵 No 𝐴 No ) → ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) )
7 6 ancoms ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) )