| Step |
Hyp |
Ref |
Expression |
| 1 |
|
6re |
⊢ 6 ∈ ℝ |
| 2 |
|
6lt8 |
⊢ 6 < 8 |
| 3 |
1 2
|
ltneii |
⊢ 6 ≠ 8 |
| 4 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
| 5 |
|
ipndx |
⊢ ( ·𝑖 ‘ ndx ) = 8 |
| 6 |
4 5
|
neeq12i |
⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 6 ≠ 8 ) |
| 7 |
3 6
|
mpbir |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 8 |
|
5re |
⊢ 5 ∈ ℝ |
| 9 |
|
5lt8 |
⊢ 5 < 8 |
| 10 |
8 9
|
ltneii |
⊢ 5 ≠ 8 |
| 11 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
| 12 |
11 5
|
neeq12i |
⊢ ( ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 5 ≠ 8 ) |
| 13 |
10 12
|
mpbir |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 14 |
7 13
|
pm3.2i |
⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |