Description: The slots Scalar , .s and .i are different from the slot dist . Formerly part of sralem and proofs using it. (Contributed by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slotsdnscsi | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 5re | ⊢ 5 ∈ ℝ | |
| 2 | 1nn | ⊢ 1 ∈ ℕ | |
| 3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 4 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 5 | 5lt10 | ⊢ 5 < ; 1 0 | |
| 6 | 2 3 4 5 | declti | ⊢ 5 < ; 1 2 | 
| 7 | 1 6 | gtneii | ⊢ ; 1 2 ≠ 5 | 
| 8 | dsndx | ⊢ ( dist ‘ ndx ) = ; 1 2 | |
| 9 | scandx | ⊢ ( Scalar ‘ ndx ) = 5 | |
| 10 | 8 9 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ ; 1 2 ≠ 5 ) | 
| 11 | 7 10 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) | 
| 12 | 6re | ⊢ 6 ∈ ℝ | |
| 13 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 14 | 6lt10 | ⊢ 6 < ; 1 0 | |
| 15 | 2 3 13 14 | declti | ⊢ 6 < ; 1 2 | 
| 16 | 12 15 | gtneii | ⊢ ; 1 2 ≠ 6 | 
| 17 | vscandx | ⊢ ( ·𝑠 ‘ ndx ) = 6 | |
| 18 | 8 17 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ ; 1 2 ≠ 6 ) | 
| 19 | 16 18 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) | 
| 20 | 8re | ⊢ 8 ∈ ℝ | |
| 21 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 22 | 8lt10 | ⊢ 8 < ; 1 0 | |
| 23 | 2 3 21 22 | declti | ⊢ 8 < ; 1 2 | 
| 24 | 20 23 | gtneii | ⊢ ; 1 2 ≠ 8 | 
| 25 | ipndx | ⊢ ( ·𝑖 ‘ ndx ) = 8 | |
| 26 | 8 25 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ ; 1 2 ≠ 8 ) | 
| 27 | 24 26 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) | 
| 28 | 11 19 27 | 3pm3.2i | ⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |